

Status Of SuperKEKB 2021ab February 16 – July 5, 2021

Y. Ohnishi

Revised: July 9

Overview of Machine Performance

Keeping performance

Many effort is devoted to keep performance.

stability of machine, aging of devices and infrastructures

2021ab Operation Summary

HER BxB FB noise is fixed. NIM bin and fanout replacement

- The 2021a run started on 16th February and operated for 140 days (4 months and half).
- The first ten days were devoted to the vacuum scrubbing.
- We operated with $\beta_y^* = 2 \text{ mm}$ to check hardwares and to test high current operation safely.
- Calibrations of BPM and collimator head positions, etc. were also performed by using beams during the first two weeks.
- D01V1(HER) head was replaced. The top jaw was short for the LER collimator head (March 23).
- We squeezed β_y* down to 1 mm on 10th March. Beam currents increased with "baking run". 1000 mA / 940 mA w/o physics run
- HER many aborts from April 20 to May 3.
- D02V1(LER) head was replaced due damage (June 7).

Peak Luminosity : 3.12 x 10³⁴ cm⁻2s⁻¹

	int. L recorded	int. L delivered
Shift	747.2 pb ⁻¹ May 18 swing	787.6 pb ⁻¹ June 22 swing
Day	1.964 fb -1 May 18	2.233 fb ⁻¹ May 22
7 days May 14 - 20	12.141 fb ⁻¹	13.482 fb ⁻¹
<mark>30 days</mark> May 18 - June 23	42.319 fb ⁻¹	47.370 fb ⁻¹
2021ab 140 days	123.2 fb ⁻¹	138.6 fb ⁻¹

* online data

	2020b : June 21, 2020		2021b : June 22, 2021		Unit
Ring	LER	HER	LER	HER	
Emittance	4.0	4.6	4.0	4.6	nm
Beam Current	712	607	790	687	mA
Number of bunches	97	78	1174		
Bunch current	0.728	0.621	0.673	0.585	mA
Lifetime	760	1270	540	1320	sec
Horizontal size σ_x^*	17.9	16.6	17.9	16.6	μm
Vertical cap sigma Σ _y *	0.403		0.324		μm*1
Vertical size σ _y *	0.285		0.229		μm*²
Betatron tunes v_x / v_y	45.523 / 43.581	44.531 / 41.577	44.524 / 46.596 45.532 / 43.581		
β _x * / β _y *	80 / 1.0	60 / 1.0	80 / 1.0	60 / 1.0	mm
Piwinski angle	10.7	12.7	10.7	12.7	
Crab Waist Ratio	80	40	80	40	%
Beam-Beam parameter ξ_y	0.039	0.026	0.046	0.030	
Specific luminosity	5.43 x 10 ³¹		6.76 x 10 ³¹		cm ⁻² s ⁻¹ /mA ²
Luminosity	2.40 x 10 ³⁴		3.12 x 10 ³⁴		cm ⁻² s ⁻¹

Machine Parameters

*1) estimated by luminosity with assuming design bunch length *²⁾ divide *¹ by $\sqrt{2}$

- Specific luminosity for $\beta_v^* = 2 \text{ mm}$ reproduces that of 2019 ab.
- Specific luminosity for $\beta_v^* = 1$ mm is improved compared to that of 2020ab.
- Bunch current product is achieved larger than 0.5 mA².

- mA.

History of Specific Luminosity

More detail of L_{sp}

Projection of Specific Luminosity

Beam Aborts and QCS Quench

BCM loss x5

H. Nakayama

• No orbit oscillation Very fast beam loss within

Beam Abort due to Injection Beam

13

QCS Quench List (except for earthquake and PS trouble)

4/19 (MO) Owl	1:07	HER QC1LE
5/10 (MO) Day	14:26	LER QC1LP, QC1RP
5/14 (FR) Owl	0:35	LER QC1RP
5/23 (SU) Owl	8:24	LER QC1LP, QC1RP
5/28 (FR) Owl	3:21	LER QC1RP
6/2 (WE) Swing	20:13	LER QC1LP, QC1RP
6/6 (SU) Day	16:06	LER QC1LP, QC1RP

	LER: 836 mA / HER: 819 mA HER D09V1 damaged	
1RP	LER: 906 mA / HER: 726 mA LER D02V1 damaged	
	LER: 837 mA / HER: 679 mA LER kicker trouble	
1RP	LER: 836 mA / HER: 678 mA LER D06V1 damaged	
	LER: 834 mA / HER: 677 mA LER D06V1 damaged	
1RP	LER: 840 mA / HER: 678 mA LER D02V1 damaged	
1RP	LER: 838 mA / HER: 677 mA	

LER D02VI Collimator Damage and Replacement

= beam Vertical collimator: D02V1 (LER)

tantalum (Ta) head with 10 mm long tip

82.5 m upper stream of IP

June 8, 2021

Improvements and Issues of Machine Performance

LER

2020c

Improvement of Continuous Closed orbit Correction (CCC) We modified the algorithm of orbit correction.

LER

Chromatic X-Y couplings using TBT BPMs HER

Ohmi-san's criterion $r_1' < \pm 12$ $r_{2}' < \pm 3 \text{ m}$

IP chromatic knob on

r ₁	-6.034E-02	-7.764	4.012E+03	+0.08
r ₂	-6.763E-03	-1.254	-8.22E+01	-0.1
r ₃	1.318	214.6	-6.755E+04	
r ₄	-2.319E-02	45.24	6.998E+03	+13

IP chromatic knob off

r ₁	-4.634E-02	-4.379	1.91E+03
ľ2	-9.726E-03	-2.079	2.188E+02
ľ3	1.678	185.0	-1.746E+04
r ₄	9.563E-03	37.54	6.274E+03

IP chromatic knob on

r ₁	1.69E-02	-1.644	-5.91E+03
r ₂	1.317E-02	2.028	-2.022E+03
r ₃	-2.772E-01	733.0	-2.082E+05
r ₄	-1.637E-01	26.81	1.044E+04

IP chromatic knob off

r ₁	-2.095E-02	-25.99	1.256E+04
r ₂	1.2E-02	-0.4769	-4.409E+02
r ₃	-5.715E-01	652.4	-7.325E+04
r 4	-1.142E-01	24.53	-3.876E+03

20

collision

single beam

collision

Beam Lifetime and Vertical Emittance

single beam

 ε_v depends on bunch current.

	LER	ŀ
β_{x}^{*}	80 mm	60
₿ _y *	1 mm	1
Ι	800 mA	65
Nb	1174	1
lb	0.681 mA	0.54
ε _y collision	60 pm	4
ε _y single	25 pm	4(
life collision	8 min	30
life single	6 min	32

e⁺_{inj}: 2 nC x 2 x 12.5 Hz x 80 % I_{max}= 1.9 A for lifetime: 8 min (TMCI limit : $1.4 \text{ A with } n_b:1565$)

LER : CW 80 %

LER : CW 0 %

Tracking Simulation No Machine Error

HER : CW 40 %

 $\Delta x/\sigma_{x}$

HER : CW 0 %

Tracking Simulation No Machine Error

Touschek lifetime is similar to CW 40% with collimators.

The simulation is longer than the measured lifetime for CW 40 %.

46 min > 32 min

- LER
 - The ε_v is 22 pm 25 pm for the single beam.
 - The ε_v increases up to 60 pm due to beam-beam blowup at 800 mA(0.68 mA/bunch).
 - The luminosity reduction is 65 %.
 - The DA can almost explain the measured lifetime.
 - difference between CW 0 % and CW 80 %.
 - The lifetime is about 8 min for collision at 800 mA. It is quit shorter than what we expected.
- HER
 - The ε_v is 28 40 pm which depends on the bunch current.
 - Beam-beam blowup is mild. It is from 40 pm to 45 pm at 650 mA(0.55 mA/bunch).
 - The collimators reduce the DA significantly. It is same as the LER
 - The measured lifetime is shorter than the simulation. (32 min < 46 min; vacuum lifetime not included)

The crab waist reduces the DA. But the tight collimators reduce the PA significantly. The collimators make small

24

Transverse Mode Coupling Instability (TMCI)

Kick factor (vertical) depends on D02V1, D03V1, D06V2, D06V1.

* measured value (M. Tobiyama)

LER Collimator Impedance

The theoretical threshold is factor of 1.8 to the measured threshold. The measured kick factor is 1.8 times larger than the **GdfidL** simulator.

Calculation of GdfidL Electromagnetic Field Simulator

Length(along beam axis) of head : 10 mm

T. Ishibashi

Zagorodnov's equation

$$k_{\perp} = 0.215 A Z_0 c \sqrt{\frac{\alpha}{\sigma_z d^3}}$$

[I. Zagorodnov, Wakefield Calculations for 3D Collimators, EUROTeV-Report-2006-074.]

BxB Feedback Noise in HER

HER BxB FB noise is fixed on June 30. NIM bin and fanout replacement

The noise moved away from the working point on May 14.

7/1

Tune History: Optics degradation

Discrepancy between model and measurement of v_y increases rapidly after QCS initialization with optics corrections. When we skip the QCS initialization, the discrepancy becomes small. QCS coils move slowly or field/orbit drifting?

7. 5/23 QC1RP & QC1LP quench

Injector Linac, Beam Transport, Injection System

60 klystron units 240 accelerating structures (S-band 2-m-long)

Masanori Satoh

Injector Linac

M. Satoh

Bunch Charge from Injector Linac

Average charge is ~ 2.4 nC/bunch for 1st bunch 2nd bunch is lower than 1st bunch.

QE decreased due to human error (end of March) Bunch charge feedback was stopped because laser power reached 100 %. **1st bunch Electron charge at BT end** 2nd bunch, Charge FB Bunch charge reduces. Charge (nC) Laser mirror 0.5 was adjusted. 3/31 4/30 5/31 6/30 ohomos 3/1/2021 QMD10E_M Average charge is ~ 1.2 nC/bunch Stability of charge is poor. 2-bunch injection is not available so far because the emittance of 2nd bunch is larger than 1st bunch.

Injection and emittance

32

Issues of injection

• HER

- The injection efficiency("raw") is insufficient. It is 40~60%.
- The blowup of emittances in the e-BT line is still serious issue.
 - The normalized emittance($\gamma \epsilon_{x,y}$) blows up from 20 µm in BT1 to 100~200µm in BT2.
- Injection efficiency can not be kept without tuning of the horizontal orbit at the injection point.
- Septum angle and position have to change.
 - After an abort, the septum angle has to reduce 2x10⁻⁴ rad and it should be resumed at the full current.
- Bunch charge of e- beam is getting lower from 1.4nC to 1.0nC during short term. The 2-bunchinjection is not available.
- The emittances of the 2nd beam become larger than 1st bunch after the positron target.

IFR

• The injection efficiency and beam backgrounds for the 2nd bunch are worse than 1st bunch.

33

Data of Bunch Oscillation Recorder (BOR)

Large orbit leakage due to injection kickers is observed in the horizontal plane after injection in the LER.

Problem is that pulse shapes (half sine) are different among six kickers.

This might be **beam loss (BG)** at higher beam current and source of instabilities.

Horizontal injection error:

 $2J_x = 1.47 \times 10^{-6} \text{ m}$

QC2LP(O) : radius = 30 mm $\beta_x = 163 \text{ m}. \Delta x = 15.5 \text{ mm}$

D06V1 : half width = 6 mm $\beta_x = 14.6 \text{ m}. \Delta x = 4.6 \text{ mm}$

Data of Injection Beam using TBT BPMs in LER

Kicker leakage orbit (stored beam):

$2J_x = 5.56 \times 10^{-7} \text{ m}$ 1/3 of injection error

QC2LP(O) : radius = 30 mm $\beta_x = 163 \text{ m}. \Delta x = 9.5 \text{ mm}$

D06V1 : half width = 6 mm $\beta_x = 14.6 \text{ m}. \Delta x = 2.9 \text{ mm}$

> Oscillation is damped in 250 turns owing to BxB feed back system.

Summary of Machine Operation

Achievement of 2021ab

- 1. Difficulties of increasing beam currents
- enhances the aborts (?).
- Narrow collimator aperture (physical aperture: PA) which is smaller than dynamic aperture (DA)
- Short lifetime in the LER; Crab waist reduces DA. However, the aperture in the LER is PA = DA.
- Lower "TMCI" threshold; 0.9 mA/bunch, large tune shift of single bunch ~0.013 > half of synchrotron tune in the LER current. We measured the beam loss owing to orbit oscillation using BOR.
- ۲ • Injection kicker leakage orbit in the LER; It becomes a source of instabilities. Beam loss is proportional to stored beam
- BxB FB in the HER; noise effect (fixed) and feedback gain, feedback gain and luminosity.
- Synchro-beta resonance structure; good working area is small. Luminosity and DA is compatible ? \bigcirc
- Stabilities of linac injector; Many types of feedback system should work sufficiently. Stability of injection system; septum and kickers, especially HER septum behavior.
- 2. Beam-beam blowup
- ۲
- Beam current ratio between LER and HER affects flip-flop of beam size. \bigcirc
- 3. Beta squeezing (not performed in 2021ab)

• Abnormal beam abort with beam loss; no oscillation, very fast beam loss within a few turns. Damaged collimator head

Effect of chromatic X-Y couplings is still unclear or IP knob is not sufficient. Rotating sextupoles in LER is effective.

• Down to 0.8 - 0.6 mm is necessary to improve luminosity. Training process is needed. (It takes time; see $\beta_v^* = 1$ mm)

	2021b		2021c	2022b
	Target	Achieved	Target	Target
L _p (cm ⁻² s ⁻¹)	3.8 x10 ³⁴	3.12 x10 ³⁴	4.8 x10 ³⁴	8 x10 ³⁴
int. L (fb ⁻¹)	280	213.5	410	730
I _{max} (A)	1.1	1.0 (0.85)	1.2	1.6

Near-Term Plan

Y. Suetsugu

Works Planed in This Summer Shutdown

- Regular maintenance
- Movable Collimator
 - Replacement of 2 collimator heads in HER
 - Upgrade of driving device of 2 collimators in HER
 - in LER
 - Relocation of D02V1 in LER (not decided)
- Exchange of the mirror of SR beam size monitor in LER
- Installation of HOM absorber at RF section (Nikko) in HER
- Beam transport line (BT)
 - beam profile monitors with OTR screen
 - beam shutter at the injection in LER
- Installation of strip-line kicker in RTL line (DR)
- Infrastructures; measures against aging
 - Replacement of HV (66 kV and 6.6 kV) power cables
 - Repair of roof at power stations to avoid leakage rain drops
 - Replacement of old cooling water pumps

• Replacement of collimator head (D06V2) with hybrid-type (tantalum and Cu coated carbon)

40

Near-Term Plans at Injector Linac

K. Furukawa

- Summer 2021
 - Amplifier and optical elements to 2nd laser for rf-gun
 - Cathode and window replacement for rf-gun
 - Core switch upgrade for the computer network
 - Seven pulsed steering magnets in upstream linac
 - Solid state amplifiers to replace a mid-power klystron
 - Degraded rf waveguide replacements
 - Fast beam position monitor to separate e-/e+
 - 2nd rf-gun as a backup/development, ... and more

• Upgrade before 2026

- Pulsed magnets/fast kickers
- Girder movers
- Energy compression system
- RF gun
- Positron capturing
- Accelerating structures
- New capacitors to eliminate PCB

Pulsed magnets/kickers

Laser shaping with DOE

Secondary RF gun

New beam position monitor

Core network switches

High precision movers

PCB capacitor renewal

New energy compressor

RF gun

Positron capture section

Accelerating structure

Y. Enomoto et al.

FC current (kA)

Positron beam

• 5 nC at BPM<SP_16_5> (1st BPM after e+ target) • \sim 3 nC LTR (Linac To damping Ring) and downstream

Some more steering/Q magnets will be installed after target in 2021 (this summer). • Increase gradient: 7.3 MV/m to 14.0 MV/m (design) for two structures (AC 15 1[2] situated at

• Increase FC field and DC solenoid field. (power supply should be improved)

M. Satoh

Luminosity Projection

