Beam Feedback Systems and BPM Read-out System for the Two-Bunch Acceleration at KEKB Linac

Kazuro Furukawa and Norihiko Kamikubota, Tsuyoshi Suwada, Tomonori Obata (KEK)

<URL:http://www-linac.kek.jp/>

Introduction

 Experiment Efficiency of CP Violation Study at KEKB Electron / Positron Collider
 Now Electron 780mA, Positron 1200mA 2.6A Positron will be Stored
 Especially Quality and Quantity of Positron is Important

◆ Linac : 8GeV e⁻ 1.28nC / 3.5GeV e⁺ 0.64nC 50pps

Multi-Bunch Acceleration at Linac

 —> Integer Relation 2856MHz : 508MHz = 275 : 49 in rf System
 Common Frequency 10.38MHz = 96.29ns (Bunch Separation)
 —> Only 2 Bunch Possible

 Stable 2 bunch Acceleration
 —> Longitudinal and Transverse Wakefield Effects Should be Managed

Upgrade of Beam Instrumentation —> Should Observe Both 2 Bunches Simultaneously —> Should not Lose Accuracy for 2 Bunches Separated 96ns

Wire Scanner

- —> Split the Signal and Read ADC with the Separate Gate
- —> Possible to Measure the Emittance of Each Bunch

Streak Camera

- —> Observe with Separate Timing
- —> Possible to Measure the Longitudinal Bunch Structure

Beam Position Monitor (BPM)
 —> Necessary to Read-out 90 Stripline-type BPMs
 —> Need to Process Two Signals Separated 96 ns

Read-out System of BPMs

 18 Measurement Stations along the 600-m Linac Connected with 4 - 10 BPMs (90 in Total)

- Signal Processing

 -> Avoid Overlap with Delay-lines
 -> Overlay with Combiner
 -> Waveform Digitization
 with Oscilloscope (2ch 5Gs/s)
- Timing Trigger
 —> Beam Synchronized Trigger along the Linac by 571MHz rf
- Pre-process with VME Computer

 Adjust Dynamic Range
 According to Beam Mode
 (Sometimes x1 -> x30)
 Read thru GPIB
 Locate and Process
 Each Signal in the Waveform

Improvement for 2-Bunch Acceleration

Acquire 2 Beam-bunch Information in One rf Pulse

 > Difficult with Dedicated Electronics
 (Challenging Issue for Next 50Hz Read-out System)
 > Easier with Oscilloscope
 Waveform becomes Shifting and Overlapping by 96ns

 Overlap of Signals

 Each Signal is 5ns in Full-width, 1ns Peak-to-peak
 > Pack Signals down to 8ns
 Sometimes Add Delay Lines

Read Resultant Non-overlapping Signals thru Oscilloscope

 Apply Calibration Information Mapping Function of 3rd Order Polynomial (BPM) Attenuation Factors of Cables and Oscilloscope Position Offsets by Beam-based Alignment Database was Expanded

Server Computers

—> Read all Measurement Station thru Network

—> Collect 2-Bunch Data of all 90 BPMs in One Shot, Every Second Commands were Added

Many Piece of Operation Software

 —> Many Beam Feedback Loops and
 Orbit Displays, etc.
 —> Read Once in 1 - 5 Second from Server

Example Operation Software

 Many Software Panels are Used in Beam Study and Operation

 Energy Measurement at Buncher Exit Electron Energy Measured Changing a Steering Magnet After Adjusting Gun Timing First Bunch: 15.5MeV Second Bunch: 15.8MeV Almost Equal, Good Reproducibility

Energy at A1_B8 : 15.784086844082665 MeV

1st and 2nd Bunch Energy Two-Bunch Acceleration

- Loading Evaluation
 Comparing Beams
 of 8nC & 0.8nC
- Relation between
 Energy vs. rf Timing

New Feedback for Energy Equalization

 Need to Equalize Beam Characteristics of Two Bunches Suppress Difference of Beam Characteristics from Wakefields

Energy Difference from Longitudinal Wakefields

Change Energy Gain by rf Timing of SLED (Energy Doubler)

Successful Acceleration of 2 Bunches (Blue and Green)

K.Furukawa

Conclusion

- For 2-bunch Operation of KEKB Injector Linac Built 2-Bunch Simultaneous Read-out System of 90 Beam Position Monitors
- Indispensable to Understand
 Differences of Beam Characteristics of 2 Bunches
- Many Operation Software Panels Have Been Built
- Beam Feedback Systems
 Extended Orbit / Energy Stabilization
 Installed New Energy Equalization
 Essential for Beam Operation

Now Carrying Beam Study for Injection into KEKB Ring

Thank you ...

Design Beam and Achieved Performance

			8.	8-GeV electron		3.5-GeV positron	
			Goal	Achieved	Goal	Achieved	
(1) Gun	Energy	keV	200	200	200	200	
	Intensity	nC/pulse	1.5	2	13	14	
	Pulse width	ns	2	1.8	2	2.8	
(2) Buncher	Energy	MeV	16	16	15	15	
	Energy spread (σ)	MeV			2	2	
	Intensity	nC/pulse	1.4	1.9	>10	11	
	Efficiency			95%		90%	
	Emittance $\gamma\beta\epsilon(\sigma)$	mm	0.06	0.04	0.06	0.08	
	Bunch width	ps	5	6	16	10	
(3) Arc	Energy	GeV	1.5	1.7	1.5	1.7	
	Energy spread (σ)	MeV	0.6%	0.29%	0.6%	0.38%	
	Jitters (p-p)					0.1%	
	Drift (with feedback)				<0.2%/h		
	Emittance $\gamma\beta\epsilon(\sigma)$	mm		0.17		1.7	
	Transmission			100%	>95%	100%	
(4) e+ target	Energy	GeV			3.7	3.7	
	Intensity	nC/pulse			>10	10	
	Transmission					96%	
(5) e+ Solenoid exit	Intensity	nC/pulse				2.4	
	Specific yield	e+/e-GeV				6.8%	
(6) Linac end	Energy	GeV	8	>8	3.5	>3.5	
	Energy spread (σ)	MeV	0.15%	0.05%	0.125%	0.15%	
	Intensity	nC/pulse	1.28	>1.28	>0.64	0.82	
	Specific yield	e+/e-GeV				2.3%	
	Transmission			>80%			
	Emittance $\gamma\beta\epsilon(\sigma)$	mm	0.25	0.31	1.5	1.4	
	Pulse repetition	pps	50	50	50	50	

Four Beam Modes at KEKB Linac

- ♦ 4 Downstream Rings Require Quite Different Beams
- Switching Reproducibility and Reliability are Crucial
- ♦ 7300 hours of Operation in FY1999

But Only 73 hours of Beam Loss Time

Ring	HER	LER	PF	AR				
Particle	electron	positron	electron	electron				
Energy	8 GeV	3.5 GeV	2.5 GeV	2.5 GeV				
Charge	1.28 nC	0.64 nC	0.2 nC	0.2 nC				
(primary 10 nC)								
Bunch	single	single	1 ns	1 ns				
Repetition	50 Hz	50 Hz	25 Hz	25 Hz				
Store	500 mA	700 mA	400 mA	40 mA				
Time	1-2 min	5-10min	3-5 min	2-5 min				
Interval	1-2 hr	1-2 hr	24 hr	2-4 hr				