KEKB Linac Status Injector

(1.1) Injector Linac Performance

	Electron (e-)	Positron (e+)
Beam Energy	8.0 GeV	3.5 GeV
Charge	1.0 nC/pulse	0.6 (1.2) nC/pulse
Emittance	0.8×10^{-3} m	2.5×10 ⁻³ m
Energy spread (full width)	0.2 %	0.5 %
Injection rate	3.0 mA/sec	1.5 (3.0) mA/sec

(for double-bunch inj.)

(1.2) Double-Bunch Injection

Most of the injection time is spent for positrons !

-> Increase positron intensity !

How ?

(1) Increase primary electron charge ?

-> present 10 nC/bunch is already limited by Wake effect

(2) Increase positron collection efficiency

-> expensive !

(3) Increase number of the bunches ?

Constraint from frequencies of Linac and Ring,

Maximum Two Bunches but possible

Double Bunch Injection

Double Bunch Injection

(1.3) Continuous Injection

Degradation of Luminosity by gradual beam loss -> Keep Peak luminosity ! (Lifetime : (e-) ~ 300 min, (e+) ~ 150 min)

How ?

Continuous beam injection while keeping the detectors turned on

-> detectors trip-off by beam background ???

anyway, check the detectors tolerance

to injection backgound !

Positron current kept constant By Continuous Injection !

Continuous Injection Study

Not Yet an established Project, Still in a feasibility Study Stage

Injector Upgrade for SuperKEKB (10³⁵ Luminosity machine)

	(e+)	Stored current (e-)			(e+)	Beam Energy (e-)		Upgrade requireme
NEED Intensity upgrade for e-/e+ !		0.9 A> 1.1 A>	May 2002 KEKB design	NEED Energy upgra	3.5 GeV>	8.0 GeV>	KEKB	
grade for e-/e+!		> 9.4 A !!	esign SuperKEKB	upgrade for e+ !	 8.0 GeV !! 	• 3.5 GeV	SuperKEKB	nts to Injector

(2.1) Intensity Upgrade

e- Intensity increase

3.0 mA/sec --> 15.0 mA/sec (1 nC/pulse) already 10 nC e- beam is used as primary * Beam quality issue due to Wake field (5 nC/pulse)

e+ Intensity increase

1.5 mA/sec-->3.0 mA/sec(0.6 nC/pulse)(1.2 nC/pulse)e+ capture section upgrade

With stronger focusing solenoid (flux concentrator?)

(2.2) High Gradient Scheme

by using C-band (5712 MHz) components. Acceleration Field gradient will be doubled To raise e+ Beam energy ; 3.5 -> 8.0 GeV,

24 accl. units are Replaced to C-band (Eacc = 21 -> 42 MV/m) (Egain = 160 -> 320 MeV/unit) (max. e+ total Egain = 4640 -> 8640 MeV) e+ Damping Ring for smaller emittance and beam size to fit for smaller aperture in C-band accl. structures	Larc for e u-arc for e C e + target C e +
--	--

(2.3) Re-circulation Scheme

To accelerate e+ to 8.0 GeV,

accelerated in the linac twice. They are re-circulated to upstream and are

