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Abstract 
The capability for three-dimensional RMS envelope simulation, 
including space charge, has been implemented in the SAD (for 
Strategic Accelerator Design) [5] accelerator modeling environment 
used at KEK. The dynamics within the model are similar to that 
used by Trace3D [3] and TRANSPORT [2]. Specifically, the matrix 
of all second-order beam moments is propagated using a linear 
beam optics model for the beamline. However, the current 
simulation employs an adaptive space-charge algorithm. It 
maintains the integration step size as large as possible while 
enforcing a given error tolerance. We concentrate on the adaptive 
nature of the RMS simulation, since this is the novel feature. 

 
XAL simulation of SNS MEBT 
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Simulation Results 
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simulation results for SAD versus Trace3D horizontal beta 

simulation results for SAD versus Trace3D longitudinal beta 

Summary 
The adaptive integration algorithm is based upon discrete transfer equations for 
the correlation matrix and an adaptive step sizing formula which maintains a 
predetermined error tolerance.  At each iteration, the algorithm keeps the step size 
as large as possible while maintaining this error tolerance, however it does require 
some computational overhead.  We must compute three applications of Sh for a 
single iteration.  Yet each iterate actually propagates τ a distance 2h and, 
consequently, must be compared to two applications of Sh. Thus, the adaptive 
procedure requires a computational overhead of at least 150% that of a non-
adaptive algorithm. 

Although a fixed-step approach may then seam faster, what we loose is the 
guarantee of a given solution accuracy.  Moreover, we also lose the guarantee of 
self-consistency in the space-charge calculations. In adaptive stepping, in most 
cases, we expect a significant computational advantage by taking potentially 
much larger steps.  Considering the overall advantages contrasted with the small 
amount of additional code development, the adaptive stepping process appears as 
a clear benefit in RMS envelope simulation. 

Background - Linear Beam Optics Model 
 

• Phase coordinates z(s) at axial position s is a point in phase space.   

• Correlation matrix is defined τ ≡ 〈zzT〉   
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u Transfer matrix Φn,sc(h) for element n through length h can be written 

 
 Φn,sc(h) = Φsc(h/2)Φn(h)Φsc(h/2) + O(h3) 

  

 Φn(h) is the transfer matrix for element n w/out space charge
Φsc(h) is the transfer matrix for space alone 

 

u Letting Φ(h) ≡ Φsc(h/2)Φn(h)Φsc(h/2), define 

Sh(τ) ≡ Φ(h)τΦ(h)T 

u Then if τ(s + h) is exact solution 

Sh(τ) = τ(s + h) + h3C 

 

C = τ’’’(s0) some s0 ∈ [s, s+h] 

• Entrance of each stage is at s ≡ sn so that  

 τn ≡ τ(sn) 

• Beamline element n is represented by matrix Φn,sc including space charge 

• Propagation equations for {τn} are 

  τn+1 = Φn,scτn Φn,sc
T 

  

Adaptive Stepping 

• Error residual of τ(s+h) for step size h is given by 

ε(h) ≡ h3||C|| 

 

• Objective is to find largest hi such that ε(hi) ≤       where      is a given error tolerance. 

• Use step doubling 

τ1(s+2h) ≡ S2h(τ)     = τ(s+2h) + (2h)3C 
τ2(s+2h) ≡ Sh(Sh(τ)) = τ(s+2h) + 2(h3C) 

 

•  Let Δ(h) ≡ τ1(s+2h) - τ2(s+2h) so that for any matrix norm || ⋅ || 

ε(h) = (1/6)||Δ(h)|| 

 

• Assume we are given a step size hi and wish the next step hi+1 to maintain the error   , that is,   

ε(hi+1) = 

 

from ε(hi+1)/ε(hi) = [hi/hi+1]3, we have 

 

	

SAD vs Trace3D simulations are of J-PARC transport line between 
181 MeV linear accelerator and 3 GeV synchrotron.  Beam is H- at 
30 mA. 

In all simulations we have chosen  ε = 10-5, δh = 0.05, initial step 
size h0 = 3 cm, and used the l1 matrix norm.  Trace3D uses a 
constant step size of h = 1 cm.  

(Demonstrates adaptive stepping) 
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Smaller steps around 
“corners”	

Small discrepancy in longitudinal 
case.  More space charge effect for 
Trace3D.   
SAD is symplectic  
Trace3 equations of motion  
– but still uncertain why this is so. 

hi+1 = hi
6ε

τ 1(s+ 2h)−τ 2 (s+ 2h)
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