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Abstract 
 The capability for three-dimensional RMS envelope 

simulation, including space charge, has been implemented 

in the SAD (for Strategic Accelerator Design) [5] 

accelerator modeling environment used at KEK. The 

dynamics within the model are similar to that used by 

Trace3D [3] and TRANSPORT [1]. Specifically, the 

matrix of all second-order beam moments is propagated 

using a linear beam optics model for the beamline. 

However, the current simulation employs an adaptive 

space-charge algorithm. It maintains the integration step 

size as large as possible while enforcing a given error 

tolerance. We concentrate on the adaptive nature of the 

RMS simulation, since this is the novel feature. 

BACKGROUND 

The complete set of phase space coordinates for a beam 

particle, including both position and normalized 

momentum, at axis location s is given by (x,x',y,y',z,δ) ∈ 
ℜ6
. For conciseness, it is convenient to denote these 

points in phase space by a vector quantity z; we have 

6),,,,,( ℜ∈′′≡ δzyyxxz .   (1) 

Consider now a distribution of particles forming a three-

dimensional beam bunch and assume further that the 

distribution can be described by an s-dependent functional 

f : ℜ6
 × ℜ+ → ℜ on phase space. Denote by 〈⋅〉 : ℜ

6
 → ℜ 

the phase space moment operator with respect to f. That is, 

for any (possibly s-dependent) function g on phase space 

ℜ6
 we have 〈g〉 ≡ (1/Q)∫g(z;s)f(z;s)d6z where Q ≡ 

∫f(z;s)d6z is the total charge of the bunch.  
The phase space coordinates are themselves functions 

on phase space and we may take their moments. The 

vector z  ≡ 〈z〉 contains all the first-order moments of the 
distribution f and its value is the centroid of the beam at 

location s. The symmetric, positive-definite matrix  

T
zzτ ≡    (2) 

contains all the second moments of f and is known as the 

correlation matrix of the distribution. The matrix ττττ(s) 
describes the second-order evolution of f. It is our 

independent variable. Another quantity often seen in the 

literature is the covariance matrix σσσσ ≡ 〈(z− z )(z− z )T〉 = ττττ 

− T
zz . It is the matrix of central, second moments of f 

and analogous to the standard deviation, its univariate 

counterpart. The matrix σσσσ describes the width of f and is 
the origin of the term “RMS envelopes”.  For the case of a 

centered beam where 0z = , we have σσσσ = ττττ, the case most 
often treated in the literature.   

Beam Dynamics 

We use a linear beam optics model for the beamline 

where each beamline element n may be represented as a 

transfer matrix ΦΦΦΦn. We let ττττn denote the correlation matrix 
at the entrance to element n and ττττn+1 denote the correlation 
matrix at its exit.  Then the dynamics equations for {ττττn} 
are given by [3] 

T
scnnscnn ,,1 ΦτΦτ =+ ,  (3) 

where ΦΦΦΦn,sc is the transfer matrix for element n including 

space charge. It has the form 

( )scnnnscn LL GGΦ += exp, ,  (4) 

where Ln is the length of element n, Gn is the generator 

matrix representing external forces exerted by element n, 

and Gsc is the generator matrix representing the internal 

forces of the beam. Equation (4) requires the assumption 

that both Gn and Gsc are constant. This is often the case 

for the matrix Gn, but seldom true for the space charge 

matrix Gsc; it depends strongly upon the correlation 

matrix ττττ. Thus, if we are to employ Eq. (3) in an accurate 
numerical algorithm, we are forced to step a smaller 

distance h < Ln, then recompute Gsc = Gsc(ττττ) as necessary.  

Model Quantities 

Our algorithm propagates through beamline element n 

in steps of varying lengths h ≤ Ln.  For each beamline 
element n, assume that we are given separate transfer 

matrices ΦΦΦΦn(h) for the element without space charge and a 

transfer matrix ΦΦΦΦsc(h) for space charge alone, rather than 

the full transfer matrix with space charge ΦΦΦΦn,sc(h). Thus, 

ΦΦΦΦn(h) and ΦΦΦΦsc(h) are the partial transfer matrices through 

n for a distance h. 

From the two separate transfer matrices ΦΦΦΦn(h) and 

ΦΦΦΦsc(h), we need to obtain the full transfer matrix ΦΦΦΦn,sc(h). 

We must first accept that we will not get an exact value 

for ΦΦΦΦn,sc(h). The transfer matrix ΦΦΦΦsc(h) is computed under 

the assumption that Gsc is constant over h, which it is not. 

The larger the value of h, the less accurate the value of 

ΦΦΦΦsc(h). There is no point in computing ΦΦΦΦn,sc(h) to high 

accuracy, since we are always limited by the length of h.  

We employ one particularly convenient fact, 
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)()2/()()2/()( 3
, hOhhhh scnscscn += ΦΦΦΦ . (5) 

This formula gives us a transfer matrix ΦΦΦΦn,sc(h) from 

ΦΦΦΦn(h) and ΦΦΦΦsc(h) which is second-order accurate in h.  

Equation (5) can be proven with a direct application of the 

Zassenhaus formula for the product of matrix 

exponentials [7].  

Computation of the Transfer Matrices 

SAD provides the transfer matrix ΦΦΦΦn for each element n, 

but not the partial transfer matrix ΦΦΦΦn(h) that we require for 

space charge effects. We must first determine the 

generator matrix Gn = (1/Ln)log(ΦΦΦΦn) then compute ΦΦΦΦn(h) = 

exp(hGn). The matrix logarithm is computed by an 

iterative technique based upon the fact that exp(−Ai)ΦΦΦΦn → 
I as Ai → log(ΦΦΦΦn) [4]. This technique is efficient because 

repeated computation of the matrix exponential is still 

faster than direct computation of the matrix logarithm. It 

works well for when ΦΦΦΦn is symplectic, but convergence 

often fails for the general case. 

The process for computing the ΦΦΦΦsc(h) is covered 

elsewhere in the literature (e.g., see [3]).  However, we 

note some points of interest.  Inferring from Eq. (4) we 

find ΦΦΦΦsc(h) = exp(hGsc). Letting Gsc
0
 denote the space 

charge generator matrix in the beam frame, then Gsc = 

L0
−1
R0

−1
Gsc

0
R0L0 where L0 is the Lorentz transform to the 

rest frame and R0 is a rotation that aligns the beam 

ellipsoid to the coordinate axes. In this context Gsc
0
 is 

idempotent, that is, (Gsc
0
)
2
  = 0. Since 

exp(L0
−1
R0

−1
Gsc

0
R0L0) = L0

−1
R0

−1
exp(Gsc

0
)R0L0, we have 

( ) 00
0

0
1
0)( LRGIRLΦ sc

T
sc hh += − ,  (6) 

from the Taylor expansion of the matrix exponential and 

the fact that R0
T
 = R0

−1
. Application of (6) substantially 

reduces the computation cost of determining ΦΦΦΦsc(h). 

PROPAGATION ALGORITHM 

In many existing RMS envelope simulation codes the 

step size h is chosen a priori, typically as an integer 

divisor of Ln. There is no way of insuring solution 

accuracy in that case. In contrast we choose our step 

length h dynamically, depending upon an error criterion.  

The technique below picks the largest h while maintaining 

solution precision. It is based upon the procedure 

described in Press et. al
 
[6]. 

Within a given beamline element n and with a given 

step size h we define our stepping operator Sh : ℜ
6×6
 → 

ℜ6×6
 for the correlation matrix ττττ. Let ΦΦΦΦ(h) ≡ 

ΦΦΦΦsc(h/2)ΦΦΦΦn(h)ΦΦΦΦsc(h/2) and define define Sh according to 

 ( ) )()( hhS
T

h τΦΦτ ≡ .   (7) 

From Eq. (3) we see that Sh steps the correlation matrix 

ττττ(s) at a position s within element n to position s + h. Let 
ττττ(s+h) denote the exact solution of ττττ  for an advance from 

s to s + h. By Eqs. (3) and (5), Sh[ττττ(s)] produces a second-
order approximation to ττττ(s+h), or more formally 

( ) Cττ
3

)()( hhssSh ++= ,   (8) 

where C ∈ ℜ6×6
 is a constant matrix given by (an abuse 

of) Taylor’s theorem C = !3/)ˆ(sτ ′′′  for some ŝ  ∈ [s,s+h]. 
The term h

3
C is the remainder for the stepping process 

and our objective is to control the magnitude of this value. 

To do so, let ||⋅|| be any matrix norm on ℜ6×6
 then define  

CC
33)( hhh =≡ε .   (9) 

We recognize ε(h) as the residual error in our 
approximation of ττττ(s+h). Assume that we are given an a 
priori constraint on this error, say ε .  Then at each step i, 
our objective is to find the largest hi such that ε(hi) ≤ ε . 
We accomplished this objective through step doubling.   

Let ττττ1(s+2h) ≡ S2h(ττττ(s)) be the result of taking one step 
of length 2h and ττττ2(s+2h) ≡ Sh[Sh(ττττ(s))] be the result of 
taking two steps of length h.  Then we have 

,)(2)2()2(

,)2()2()2(

32

31

Cττ

Cττ

hhshs

hhshs

++=+

++=+
  (10) 

Let ∆∆∆∆(h) ≡ ττττ1(s+2h) − ττττ2(s+2h) so  

)(66)( 3 hhh ε== C∆ .  (11) 

Then the ratio of ||∆∆∆∆(h)|| for two potentially differing steps 
sizes hi and hi+1 is given by 

3
1

3
1 /)(/)( ++ = iiii hhhh ∆∆ .  (12) 

This relation is the foundation for generating step lengths. 

Assume we are given a step hi and we wish the next step 

hi+1 to maintain the error ε , that is εε =+ )( 1ih . By Eq. 

(11) we have ||∆∆∆∆(hi+1)|| = 6ε(hi+1) = ε6 .  Substituting this 

into the above and rearranging yields the desired result, 

[ ] 3/1

1 )(/6 iii hhh ∆=+ ε .  (13) 

Interpretation of formula (13) goes as follows: although 

we used a length hi to step ττττ from s to s + 2hi, we could 
have used a length of size hi+1 and still remained within 

error constraint ε . Since there is no point in recomputing 
ττττ for the different hi+1 (we are already at location s + 2hi), 
the implication is we should try a step hi+1 for the next 

iteration.  

There are a couple of additional points to note here 

before concluding the section. The most important is that 

if we find hi+1 to be less than hi, we must roll back the 



computation and re-step ττττ using the smaller step size hi+1.  
This procedure is necessary because the condition hi+1 < hi 

implies we have violated our error constraint ε(hi) ≤ ε .  
Another point of practical concern is that we should not 

change the step length if formula (13) suggests a very 

small change in hi+1. If hi+1 is less than hi by only a few 

percent, it may not be worth the trouble of recomputing ττττ 
for a small gain in accuracy. Thus, we provide the caveat 

that, given the small “slackness parameter” δh, we actually 
update the next step value hi+1 only if |hi+1 − hi|/hi ≥ δh.  
Finally, we note an additional procedure to the 

algorithm which provides a potentially modest gain in 

solution accuracy. Referring back to Eqs. (10), we can 

subtract four times the second equation from the first to 

yield ττττ = (4/3)ττττ2 − (1/3)ττττ1 + O(h4). Use of this formula is 
known as internal extrapolation. However, we cannot 

monitor its accuracy. Although it is higher order, it may 

not be higher accurate, we have no way of knowing.  Its 

use seldom does harm. 

SIMULATION RESULTS 

An RMS simulation module was developed for the 

SAD accelerator modeling environment based upon the 

principles here. The module was implemented primarily 

in SADScript [5], a scripting language similar in syntax to 

Mathematica
 
[8].  

Figure 1 compares the results of the SAD RMS 

envelope simulation and Trace3D for the case of the Japan 

Proton Accelerator Research Complex (J-PARC) at Tokai, 

Japan. The beamline being modeled is the transport 

section between the linear accelerator and the 3 GeV 

synchrotron. An H
−
 beam enters the transport at 181 MeV 

and 30 mA. The two plots in the figure show the 

horizontal and longitudinal β functions, respectively. In 
both simulations we have chosen ε  = 10−5, δh = 0.05, 
initial step size h0 = 3 cm, and used the l1 matrix norm.  

Trace3D uses a constant step size of h = 1 cm. In Figure 1 

we see very good agreement in the horizontal plane and a 

small, but noticeable discrepancy in the longitudinal. 

Trace3D appears to produce more space-charge effect in 

the longitudinal direction. SAD uses a symplectic 

technique for generating the transfer matrices whereas 

Trace3D computes ΦΦΦΦn from the equations of motion, but 

the nature of this discrepancy is still unknown. 

SUMMARY 

We have described an adaptive stepping algorithm for 

propagating the correlation matrix ττττ through beamline 
elements in the presence of space charge. It is based upon 

the discrete transfer equations (3) for ττττ and the adaptive 
step sizing formula of (13). At each iteration i the use of 

formula (13) keeps our step size hi as large as possible, 

however, it does require some overhead. We must 

compute three applications of Eq. (7) for a single iteration. 

Yet each iterate actually propagates the ττττ a distance 2hi 
and, consequently, must be compared to two single 

applications of Eq. (7). The resulting computational 

overhead is 150% of a single-step algorithm, plus the 

computation of the norm ||∆∆∆∆(hi)|| and any roll-back 
incurred. Thus, the worst-case scenario takes at least 1.5 

times the non-adaptive approach (hi constant). What we 

gain from the non-adaptive approach is the guarantee of 

solution accuracy ε . Moreover, we are also guaranteed a 
self-consistency space-charge calculation. In most cases, 

we expect a computational advantage of adaptive stepping. 

Considering the overall advantages contrasted with the 

small amount of additional code development, the 

adaptive stepping process appears as a clear benefit in 

RMS envelope simulation. 
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Figure 1: simulation results for SAD versus Trace3D 


