Control System of
the KEKB Accelerator Complex

Evolution in several aspects

Kazuro Furukawa, KEK
KEKB Control Group
Linac Control Group
Several aspects of Evolution of the Accelerator Controls at the both KEKB and Linac

- Communication Networks
- Equipment Controllers
- Gradual Approach to EPICS
- Scripting Languages

Summary
B-factory: Electron/Positron Asymmetric Collider for CP-violation Study
~3km Dual-rings: Electron(8GeV - 1.4A) / Positron(3.5GeV - 1.8A)
KEKB and Linac

◆ KEKB B-factory: Electron/Positron
 Asymmetric Collider for CP-violation Study
 ~3km Dual-rings: Electron(8GeV - 1.4A) / Positron(3.5GeV - 1.8A)
 ▪ Stable and Robust Operation
 ▪ Many Active Operation Parameters
 ▪ Importance of Controls

◆ Linac:
 ~600m, 50Hz
 8GeV 2nC Electron, 3.5GeV 1.2nC Positron
 ▪ Beam switchings for PF and PF-AR rings

Increase of Luminosity with Crab Cavities
Increase of the Luminosity

May.2000

Apr.2003
Dual Bunch e+

Feb.2005
Continuous Injections

Now
Collision with Crab Cavities

ICALEPCS 2007, Knoxville, US.
KEKB and Linac Control Systems

Linac
- Controls Upgrade (1990~) 1993
 - De-facto (and International) Standards, IP-only Networks
- No long Shutdown for KEKB upgrade
 - 3.5-times Energy increase, 10-times current increase
- Division changed at the end of Upgrade
- Three indirect User Facilities (KEKB, PF, PF-AR)
- Fewer resources

KEKB
- 5-year Shutdown after TRISTAN 1994-1998
 - Precision requirements were much different for KEKB
- Complete transition of Controls
 - from Nodal at TRISTAN to EPICS+SAD at KEKB
- Basically Single-user (Belle)
Communication Network at Linac

◆ Fiber-optic Networks (1982~)
 ✿ Because of High-power modulators for rf systems
 ✿ ~30 Loops to connect many equipment controllers
 ✿ However, the fiber-optic Technology was not mature enough yet
 ✿ Often Failed and Loop Topology made it difficult to identify the trouble

◆ All IP network (1993~)
 ✿ Still all Fiber-optic
 ✿ Faster Ethernet enables shorter packets and less failures
 ✿ Inherited at J-PARC Controls as well

◆ Gradual Transition of Technologies
 ✿ From FDDI + 10Base-FL to 1000Base-LX + 100Base-Fx

◆ Redundancy (1996~)
 ✿ At more than 40 Ethernet links
 ✿ Helped continuous operation in spite of a failure at night
 ✿ Redundant Transceivers, then Rapid Spanning-tree and HSRP/VRRP
Communication Network at KEKB

TRISTAN
- Token Ring and CAMAC Serial highways
 - Token ring between mini-computers
 - CAMAC serial highways to equipment controllers

KEKB
- IP Network for EPICS
 - FDDI+10BaseT to GbE+100Base-Tx
 - Sometimes unnecessary excess broadcast
- ARCNet for equipment controllers
 - More than 200 network segments
- MXI-2 for VXI-based frames
 - 20 segments
- Keep some CAMAC Serial highways
 - About 50 Crates
Equipment Controllers at Linac

◆ 1982~(1997) (1st generation)
 ❖ 300 microprocessor-based controllers
 ✦ Linked together with home-grown fiber-optic network

◆ 1993~now (upgrade of controls)
 ❖ 150 PLCs (programmable logic controller)
 ✦ Linked via only Fiber-optic Ethernet/IP
 ✦ Control communication with servers and program development

◆ 1995~now (upgrade for KEKB)
 ❖ 30 VXI for rf measurement
 ❖ 5 VME / 10 CAMAC for Timing
 ❖ 20 VME for Beam monitors

◆ 2006~ (upgrade of BPM readout)
 ❖ 24 Oscilloscopes with WindowsXP IOC for 100 BPMs
 ✦ 10Gs/s, 50Hz acquisition, local processing with 20 calibration parameter/BPM
Equipment Controllers at KEKB

◆ TRISTAN
 ◆ Mostly CAMAC
 ● Equipment group responsibility: CAMAC module and outside

◆ KEKB
 ◆ 100 VME/IOC without Analog processing
 ◆ 200 VXI/MXI mainframes for 900 BPMs
 ◆ 50 CAMAC crates are kept for rf and vacuum
 ◆ ARCNet boards for Magnet ps. settings, and others
 ◆ GPIB for Magnet ps. readback, and others
 ◆ PLCs for Magnet interlocks, and others
EPICS Transition at Linac

◆ Home-grown RPC at Linac (1990~/1993~)
 ❖ Bad timing but no choice because of end of old mini-computer support

◆ No real transition to EPICS yet at Linac
 ❖ There are middleware and applications

◆ LynxOS Transition was developed (1994~1996)
 ❖ To cover both RPC and EPICS with pthread, posix
 ☐ Mostly working, Failed to get funding for Hardware/Software upgrade

◆ Gateways to EPICS in several ways
 ❖ Software-only IOC and Gateway (Clients to both RPC/CA)
 ❖ Soft-IOC with device support to Linac RPC (2002~)

◆ Real IOCs are increasing
 ❖ PLC(rf,vacuum,magnet) and Linux, Oscilloscope(bpm) with Windows, VME(llrf and timing)
 ❖ RPC servers read EPICS IOCs, EPICS gateways read RPC servers
EPICS Transition at KEKB

◆ Some candidates discussed after Nodal at TRISTAN
  RPC/CORBA based control design
  Reflective memory (hardware shared memory) design

◆ No other choice than EPICS for KEKB
  No man-power for control system software
  The choice at SSC
  International collaboration was attractive
Archiver/Logger

◆ Linac
 ❖ Several archivers with different filters and stored in ascii
 ❖ Replaced with two EPICS archivers (2002)
 人社局 Channel archiver, with Java viewer, and Web-based viewer
 人社局 KEKBlog, SADscript-based viewer
 人社局 Both ~400MB/day, Dynamic ADEL changes

◆ KEKB
 ❖ KEKBlog, since 1998
 人社局 Once there was a plan to replace it with Channel Archiver
 人社局 Data conversion, no much performance difference
 人社局 Only ADEL-based filter
 人社局 ~2GB/day
 人社局 SADscript-based viewer is one of the most used applications
 人社局 With Data analysis capability, easy manipulations
Scripting Languages

- Heavy use because of rapid prototyping
- Linac
 - (1992~) Tcl/Tk as Test tools on Unix
 - (1997~) Tcl/Tk as Main Operator Programming Tool
 - (Now) Mixture of Tcl/Tk, SADscript/Tk, Python/Tk
 - SADscript has most accelerator design capability
 - Covers many features like MATLAB, Mathematica, XAL, MAD
- KEKB
 - (Nodal interpreter and Fortran covered everything at TRISTAN)
 - Python covers many areas which is not covered by medm
 - SADscript is used by operators and physicists everyday
 - Realization of novel ideas in hours
 - Only some ideas are effective, so rapid prototyping is important
SADScript

- Accelerator Modeling Environment
 - MAD-like Environment was created during TRISTAN
 - Needs for Conditionals, Flow-controls, Data manipulations, Plot, GUI

- Mathematica-like Language
 - Not Real Symbolic Manipulation (Fast)
 - Data Processing (Fit, FFT, …), List Processing (Mathematica like)
 - EPICS CA (Synchronous and Asynchronous)
 - \(\text{CaRead/CaWrite[], CaMonitor[], etc.} \)

- Tk Widget
 - Canvas Draw and “Plot”
 - KBFrame on top of Tk
 - Greek Letters

- Relational Database
- Inter-Process Communication (Exec, Pipe, etc)
 - System[], OpenRead/Write[], BidirectionalPipe[], etc.

- Beam Operation with Full Accelerator Modeling Capability
 - Also Used for non-Accelerator Applications (Archiver viewer, Alarm handler, etc.)

- Comparable to XAL, MATLAB, but very different architecture
Virtual Accelerator in SADscript

For Example in KEKB

- most Beam Optics Condition is maintained in the Optics Panel
- Other Panels Manipulate Parameters Communicating with the Optics Panel

(Oide, Koiso, Ohnishi et al)
Near Future

◆ SADscript
 ❖ Will be maintained, but should look more at XAL - CSS

◆ EPICS
 ❖ Still many hopes waiting to be realized

◆ More integration between control systems

◆ PLC usage
 ❖ IEC61131-3 Standards

◆ FPGA usage
 ❖ More embedded controllers / instrumentations

◆ More reliability considerations
 ❖ Testing environments, Surveillance, Redundancy, etc.

◆ More operation side developments

Linac and KEKB groups will share the tasks
Summary

◆ Linac had slow and gradual modernalization
 ◆ No long Shutdown time, loosing good timing

◆ KEKB made big transition at the Construction
 ◆ 5-year Shutdown, Big help from EPICS community
 ◆ Runs without much modification ever since

◆ Control system design needed a balance between many aspects
 ◆ Large and Small group differences

◆ EPICS and Scripting Languages brought a success to the both KEKB and Linac Beam Operations

◆ Linac and KEKB groups are ready to share more tasks for the future
Thank you