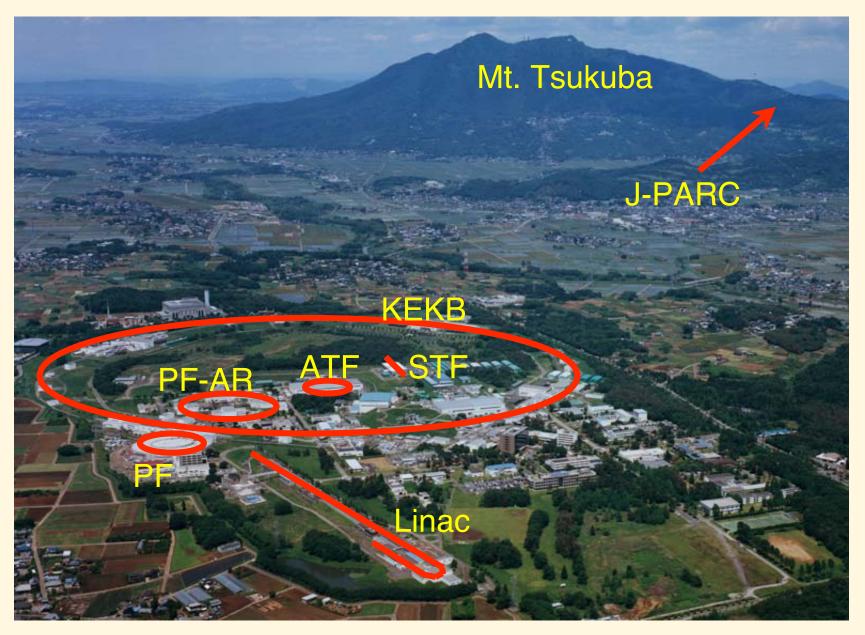
Modern Accelerator Control Systems

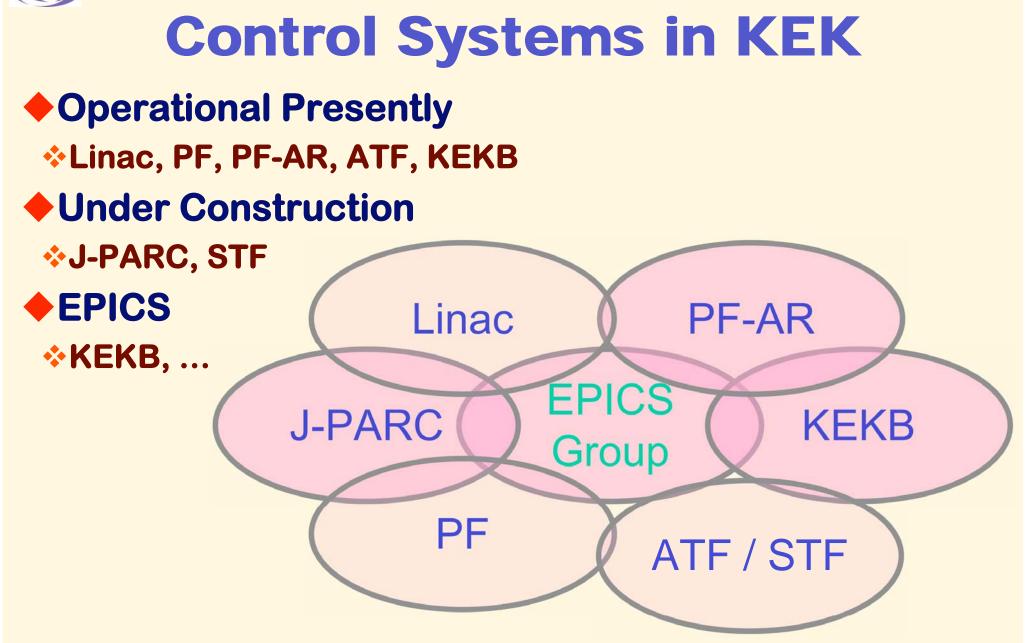
Kazuro Furukawa, KEK

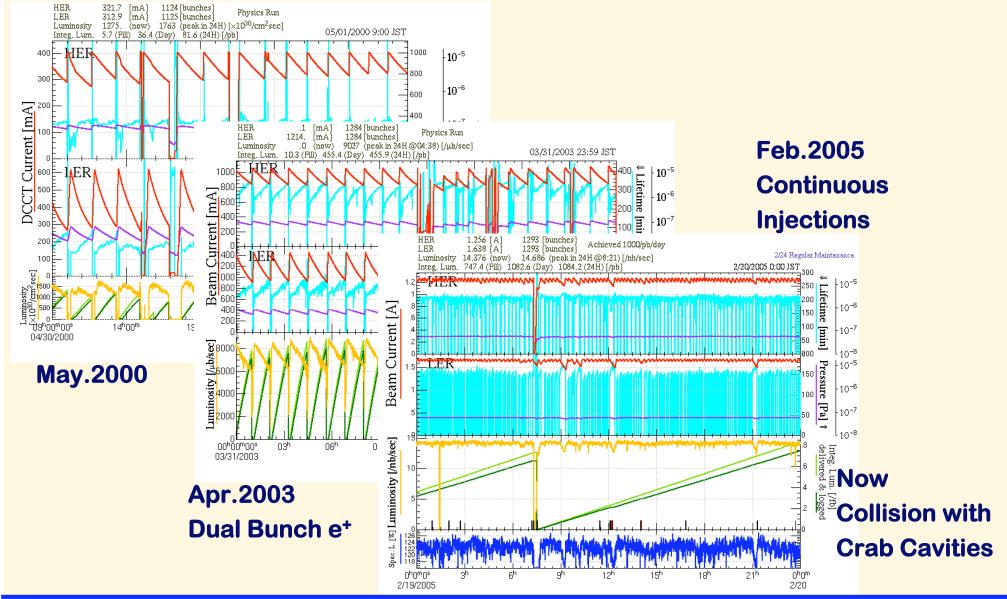
for KEKB Control Group and Linac Control Group

<kazuro.furukawa@kek.jp> Jun. 26. 2007.


1

Accelerator Controls at KEKB and Linac Operational Software Considerations on Accelerator Controls in General Available Technologies Adaptive Reliabilities Summary


KEKB and Linac


Accelerator / Control Systems

KEKB and Linac Accelerator

Increase of the Luminosity

PAC 2007, Albuquerque, NM, US

Kazuro Furukawa, KEK, Jun.2007.

6

KEKB Controls

KEKB Control System (Hardware)

GbE Fiber Optic Networks

- Single Broadcast Domain
- Central Control Room and 26 Local Control Rooms

VME/IOC

*~100 VME/IOC mostly with PowerPC CPU

Field bus

- ~200 VXI thru MXI for BPM Instrumentations
- ***~**50 CAMAC for rf and Vacuum (inherited from TRISTAN)
- *~200 ArcNet network segments for Magnet Power Supplies, and other field Controllers
- GPIB for Instrumentations, RS232C, Modbus+ for PLCs

Host Computers

- HP-UX/PA-Risc, Linux/x86 Controls Server
- 3 Tru64/Alpha with TruCluster
- Several Linux
- Many MacOSX
- (Solaris/Sparc for VxWorks)

KEKB Controls

KEKB Control System (Software) EPICS 3.13.1 and 3.14.6,8 VxWorks 5.3.1 mainly, and 5.5.1 Hope to upgrade EPICS/VxWorks Shortly IOC Development CapFast, (VDCT) Perl, SADscript for Database Configuration Oracle as a backend Database Management **Migration towards Postgresql** Operational Application Development MEDM(DM2k) for Startup Python/Tk for Equipment Controls

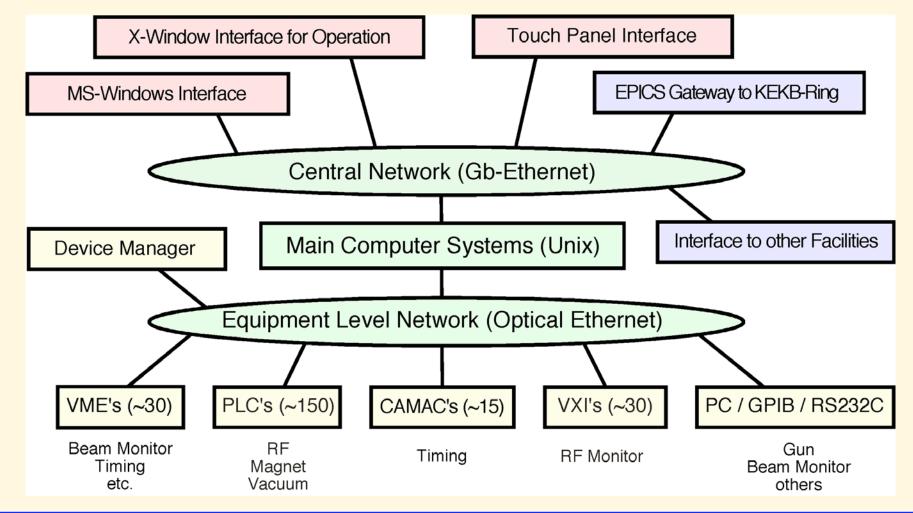
SADScript/Tk for Beam Operation, etc

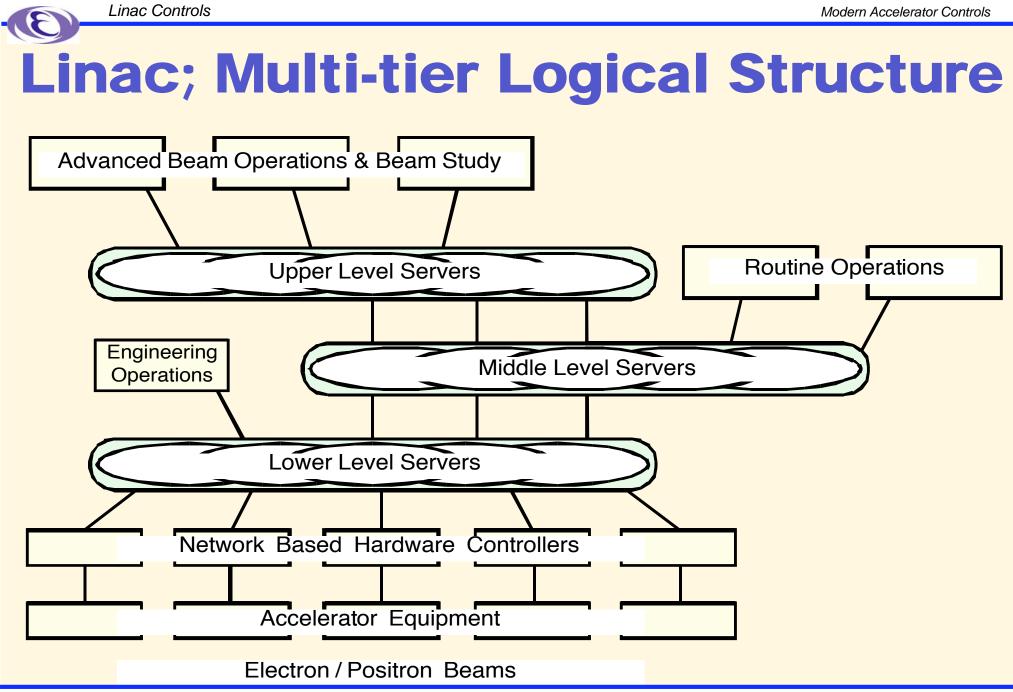
KEKB Controls

KEKBlog/kblog Archiver is Used from the Beginning of the Commissioning

- Just less than 2GB / day
- Several Viewer Tools
 - **Very often Used to Analyze the Operation Status**

Zlog Operation Log


- Zope, Python, PostgreSQL
 - **Most of the operation logs**
 - In Mostly Japanese
 - **Figure Storing Integration**
 - ex. Screen shot of operational Panels


Linac Controls

Linac; Physical Structure

Multi-tier, Multi-hardware, Multi-client, ...

PAC 2007, Albuquerque, NM, US

Software Architecture

Base control software structure for Multi-platform

- Any Unix, OS9, LynxOS (Realtime), VMS, DOS, Windows, MacOS
- TCP UDP General Communication Library
- Shared-Memory, Semaphore Library
- Simple Home-grown RPC (Remote Procedure Call) Library
- Memory-resident Hash Database Library
- Control Server software
 - Lower-layer servers (UDP-RPC) for control hardware
 - Upper-layer server (TCP-RPC) for accelerator equipment
 - Read-only Information on Distributed Shared Memory
 - Works redundantly on multiple servers

Client Applications

- Established applications in C language with RPC
- Many of the beam operation software in scripting language,
 - ¤ Tcl/Tk
 - ☐ SADscript/Tk

KEKB and Linac Operation

KEKB and Linac Operation

SADScript

Mathematica-like Language

Not Real Symbolic Manipulation (Fast)

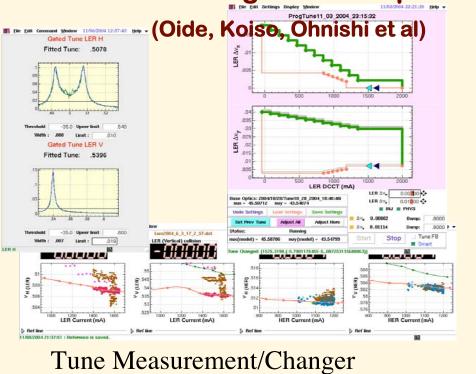
*****EPICS CA (Synchronous and Asynchronous)

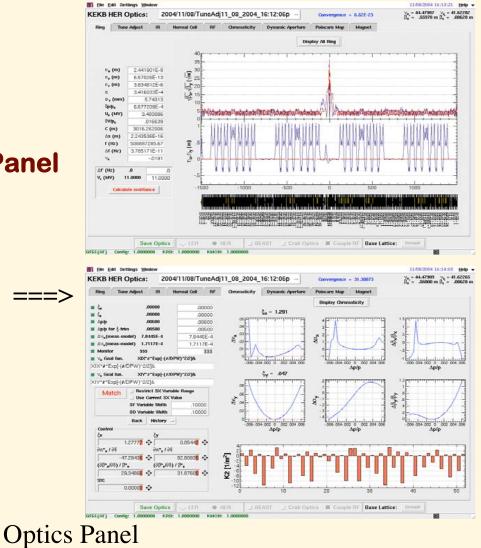
- CaRead/CaWrite[], CaMonitor[], etc.
- (Oracle Database)
- Tk Widget
- Canvas Draw and Plot
- KBFrame on top of Tk
- Data Processing (Fit, FFT, ...)

Inter-Process Communication (Exec, Pipe, etc)

System[], OpenRead/Write[], BidirectionalPipe[], etc.

- Greek Letter
- Full Accelerator Modeling Capability
- Also Used for non-Accelerator Applications
- Comparable to XAL, but very different architecture




Virtual Accelerator in KEKB

For Example in KEKB

*most Beam Optics Condition is maintained in the Optics Panel

Other Panels Manipulate Parameters Communicating with the Optics Panel

Beam Optics Database

Repository of Inputs to Simulation Codes?

XSIF Extended Standard Input Format

- Many Simulation Codes utilize it
- SAD does not
- Currently a Conversion Tool is Used to for These Input Formats The Dogbone lattice was reproduced on
- ***XSIF (LIBXSIF) inclusion in SAD?**

Yet another Generalized Input Format?

Separation between Beamline Geometry (relatively static) and Beam Optics (more varying)

Could be structured into XML

Relational information to each Hardware Components

- **We do not prefer complicated relations**
- MAD to SAD conversion by Koiso
- Class library: acsad0.kek.jp:/users/oide/ILC/DR/DB.

SAD successfully.

CVS repository by Ohnishi.

Accelerator Controls

Definition and goal

Specified only after technical details of the accelerator is decided

¤ Of course the final goal is the science achievement

Often change after commissioning

- ☑ Many prefer to flexibility as well as to robustness (depending on the purpose)
- **Should support rapid development to realize novel ideas immediately**
- Unfortunately we don't have general accelerator controls

We may have to make something

History

Discussion of accelerator controls

- At ICALEPCS conferences
 - \blacksquare After some success of NODAL at SPS/CERN
 - **X**Needs for more general software tools
- NODAL was chosen at TRISTAN
- SLC/SLAC used Micros + VMS
- Standard model
 - **Field-network + VME + Unix + X11**
- Software sharing
 - **¤ Definition of a Class to represent whole accelerator**
 - •Which was impossible
- More common control system with extended API
 - ¤ncRPC/CERN, TACL/CEBAF, ACNET/Tevatron, etc
 - **¤ EPICS got popular maybe because of the selection at SSC, APS, CEBAF, BESSY, ...**
- Then more object oriented software (naturally after RPC)
 - **More computer aided development possible**
 - **¤CICERO/CERN, TANGO, CORBA+Java, CERN, ...**
 - **Windows/Microsoft, ...**

No common controls yet

- Balance between many available technologies
- Object-oriented vs. Channel-oriented
 - Object-oriented technology
 - **X** More support benefits from software engineering
 - **Extendable, clearer definitions**
 - **Different people have different ideas on control objects**
 - Channel-oriented technology
 - **¤ Flat (one-layer structure), simple, scalable**
 - **X** Not much support from software engineering
 - **Easy to make gateways**

More balances

Compiled language vs. interpretive language

- Two level languages
 - **Interpretive language for rapid prototyping**
 - Compiled language for established algorithms
- After too much success of NODAL
- Compiled languages programmed by expert
 - Documentation, maintenance, policy-driven
 - **Manageable, then reliable**
- Interpretive/scripting languages
 - **¤ Rapid development**
 - Realization of novel ideas in hours
 - **Everyone attends the construction of operation environment**
 - Another level of management/maintenance required

More balances

Best & aggressive vs. moderate & conservative

New technology is attractive

- ¤But can be a "fad"
- **Can we justify the choice?**

For longer life-span, which is better?

- Life of accelerator is often very long compared with
 - •User facilities
 - Commercially available software/communication technologies
- Correctional performance continuously advances

Accumulation of operation knowledge base

- **Stored mainly as software and database in the control system**
 - Beam stabilization algorithms, hardware startup procedures, etc

It is valuable treasure

- There should be mechanism to keep such resources
 - •With longer life-span

More balances

International vs. de-facto standards

- International organizations pursue ideal solutions
 - **Sometimes they don't become de-facto standards**
 - **Selection of one of many standards is difficult**

Watching the market

TCP/IP network, Unix/Windows operating system, VME boxes

Advantages of de-facto standards

- **Economical advantage to select products out of markets**
- **Save man-power avoiding proprietary development**
- **Solutions** will be provided for the old standard in the next generation
- □ As a whole, it is good for long life-span

PLC

Programmable Logic Controllers (PLC)

- Rule-based algorithms can be well-adopted for simple controls
- ***IP** network for the both controls and management were preferable
 - **Especially at KEK/Linac which has a policy of IP only field network**
- *~150 PLCs at Linac since 1993, and also many at J-PARC
- Isolated/separated development becomes easy
 - **Outsourcing oriented**
- Equipment developer oriented
 - **Many maintenance capabilities were implemented**
- IEC61131-3 Standards
 - 1 5 languages, with emphasis on naming
 - **¤ Not so popular in Japan**
 - **¤ Effort to make common development environment**
 - **XML** representation of resources
 - **Should be paid more attention**
- Redundancy

Network with only IP/Ethernet

The policy chosen when we upgrade Linac in 1993

- Make network management simpler
 - **Faster switches, routing, network-booting, etc.**
- Avoid Hardware failure and analysis effort with old field network
 - Home-grown field networks need much dedicated man-power
- Cost for optical Ethernet went down at around 1995
 - **Linac has high-power modulator stations, noise source**
- More and more intelligent network devices
 - **¤ex. Oscilloscopes with Windows/3GHz-Pentium built-in**
 - Even EPICS IOC, MATLAB, or others can be embedded
- Network components can be replaced one-by-one
- Security consideration will be more and more important

FPGA

Another "everywhere" after IP network

- Digital circuit and software can be embedded in to one chip
 - **Even CPU core is embedded**
 - **Flexible and robust, wonderful platform for local controls**
 - Sometime terrible source of bugs
- Nano-second level timing
- More and more gates, memory, pins, etc
- More software support

ATCA and µTCA

Advanced telecommunications computing architecture

- Accommodate several 100ohm serial buses
- GbE or PCI-express, 10GbE, etc
- Typically 14slots in 19" and 12-unit height
- Shelf manager manages healthiness of the system
 - through Intelligent Platform Management Interface (IPMI)
- Many reliability improving facilities, redundancy, hot-swap, etc

MicroTCA

More recently defined in 2006, based on AdvancedMC Mezzanine Card defined in ATCA

Begin to have many facilities from ATCA

EPICS

Now is a kind standard, but ...

Object-oriented design support

- Naming scheme, and/or design of new record
- More software-engineering support favored
 - **Several different efforts to provide better environment**
 - Java IOC (M. Kraimer), Control system studio (M. Clausen), Data access (R. Lange)

Security mechanisms

- *****User, Host-based protection available
- More security
 - **Dynamic controls of security**
 - Access logging

Dynamic configuration of database

- Dynamic creation / loading of records
- Dynamic removal of records

Maybe some part of the codes can be shared with redundant-IOC project

Magnet Controls

It is typical controls and still many things to do

Many magnets and many power supplies

- **No one-to-one correspondence**
- Which hardware interface to use

Procedures

Interlock status, on/off, analog with some precision, etc

Energy, kick - field - current conversions

- **¤** How to represent those conversion curves
- Timing synchronous operation
 - **¤** for tune change, orbit correction, etc.

Standardization

Timing Event System

Present Timing System

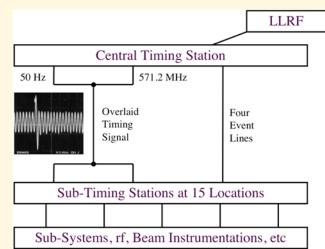
Provides ~3pico-second Timings to ~150 Devices

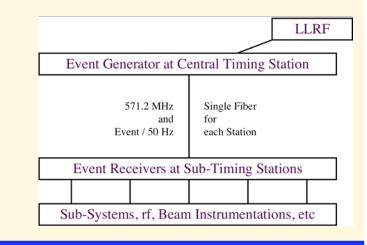
Only 4 Events can be Distinguished

VME(x6) and CAMAC(x10)

Diamond Event System

Single Fiber can Transfer Clock, Delayed-Timings, Events (256), Data Buffers (2k-bytes)


New IOC


MVME5500

RTEMS (developed at BNL)

≍ (May migrate to VxWorks if KEKB upgrades Vxworks)

EPICS Driver/Device Support from SLS/Diamond/SLAC/LANL

Reliability

The end user expect rigid reliable operations Inner layers need flexibilities **Because of daily improvement** hardware Compromise between hardware Interface equipment controls **X** Practical or ideal solutions beam controls **Aggressive and conservative** linac ring **Under restrictions of** accelerator physics Time, safety, budget, man-power beam delivery detector Here we think about data acquisition adaptive reliability computing

> physics, chemistry, medical treatment

Reliability Increase without much Cost

There should be "right way"

We hope to have it some day, but for now we need interims

Surveillance for everything

Well-arranged system does not need this, but...

Testing framework

Hardware/Middleware tests just before Beam

Software tests when installed

Redundancy

In Many Hardware/Software components

Of course some of them are Expensive, but...

Reliability

Surveillance for everything

We have written too many pieces of software

- which assume certain circumstances unfortunately
 - ×which will fail some day
- *in scripting languages too rapidly and too easily
 x without documentations

We manage too many computers

If only one, I'm almost sure I can make it stable
¤ But in reality even hostname can be mis-labeled

We installed too many network components

without good network database etc

which sometimes has bad routing information, etc

Surveillance for everything

If certain installation of (software/hardware) was not ideal

- Find out
 - **What is the most important feature of the installation?**
 - **What is the easiest test for its healthiness?**

Routine test is carried automatically

- **by cron or continuous scripts**
- \bowtie If an anomaly found,
 - Alarm, e-Mail to the author, make error log
 - Restart related software, if not critical
 - Report to the human operator, if critical

Not ideal, but effective under limited human resources

Moving operating environment

*****For better resource performance

We tend to do it because of the pressure from budget restrictions

May lead to malfunctions

We knew they may happen

Automatic software (hardware) tests preferable

- Under new environment (machine, compiler, network, etc)
 - **Many kinds of important free software does them**
 - **Language systems, Linux Test Project**

We do some tests

- But sometimes not enough
- More thoroughly prepared tests needed

Testing Framework

When we introduce new environment

- Unit test
 - **We don't do it much yet**
 - **EPICS** began to have it, "make runtests"
 - Collecting existent test cases
 - User can provide tests in Perl/Test framework
 - Hope to have for SAD and SADscripts
- Regression tests
 - We have something, but not thorough, not exhaustive
 - **Difficult to collect cases**

Stress tests

- **We do it during operation (?)**
- We know computers rarely fail, but network/network-devices do
 - Find solution
 - Development of surveillances
 - Installation of failure-recovery or failover procedures

Reliability

When we start new run

- New software/hardware
 - **We test unit by unit**
 - **But not through operational tools prepared**
- Maintenance works
 - **We often forget to restore/initialize cables, switches, variables**
 - **Power-stop may bring another annoyance**

We need routine procedures which include

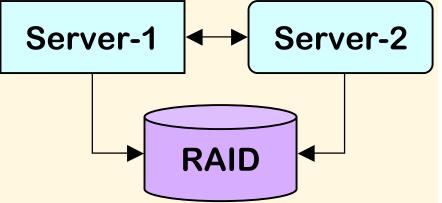
- **Hardware tests**
- **X** Name/ID matching
- **¤ Database tests**
- **¤ Software component tests**
- **Software/Hardware simulation tests**
- ***Before beam operation**
- **We do it mostly by operator observations based on written procedures**
- CERN did some efforts

Reliability

Do we need redundancy?

- Redundancy may be the last-resort measure
- **¤ It may cost**
- Centralized facilities are easier to manage
 - $\operatorname{\Xi}$ If I have only one server, my life is much easier
- But they become complicated monsters
 XNOBODY understand everything
- Especially useful for maintenance
 - Not only for failure-recovery
 - Redundant systems of complicated system; (complicated)²
- Anyway we may have to prepare backups
 Then automatic failover is just around the corner
 And ...

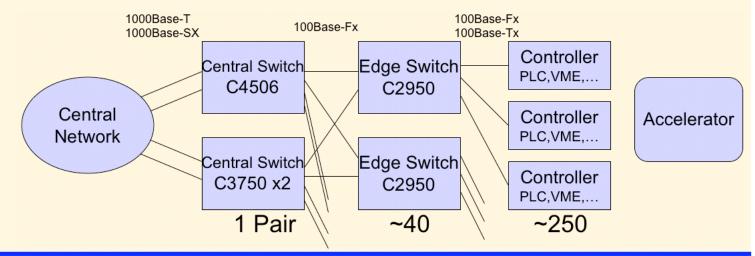
Reliability

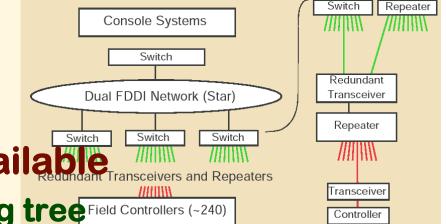

File server redundancy

RAID and Mirror-disks are used everywhere now

- We began to use Cluster software before KEKB
 - DECsafe, TruCluster for Unix
 - LifeKeeper, Redhat-AS, Rose-HA for Linux
 - NetApp

It works at least for Hardware troubles; but sometimes for Software troubles


Maintenance and Scheduling became easier



Network Redundancy

Mostly established technologies

- Wide acceptance of Ethernet and IP
- > 10 years ago
 - **Redundant Transceivers**
- More recently Standards available
 - Hsrp or Vrrp and Rapid spanning tree Field Controllers (~240)

CPU built-in redundancy is already used in several vendors

- Dual main memory with checksum at every-cycle
- ROM as well as flash memory
 - **Bad circumstances at field forced them to implement it**
- We just started to evaluate redundant CPU's
- Redundant PLC's are used at CERN
 - Siemens S7, slightly expensive

Several possibilities in architecture

- Single vs. dual backplane
- Power-supply, CPU, Network-interface
 *I/O (?)

PAC 2007, Albuquerque, NM, US

Redundant EPICS IOC

Redundant controllers are favorable

•as in PLCs

The project was started at DESY (M. Clausen)

- Redundancy monitor task (RMT)
 - Monitors healthiness of controllers
 - Manages primary redundancy resource (PRR)
- Continuous control executive (CCE)
 - Synchronizes internal states
- **Modifications for several others PRR's**
 - Scan tasks, Channel access server tasks, Sequencer, Drivers
 - Possibly user tasks

KEK joined in for wider applications

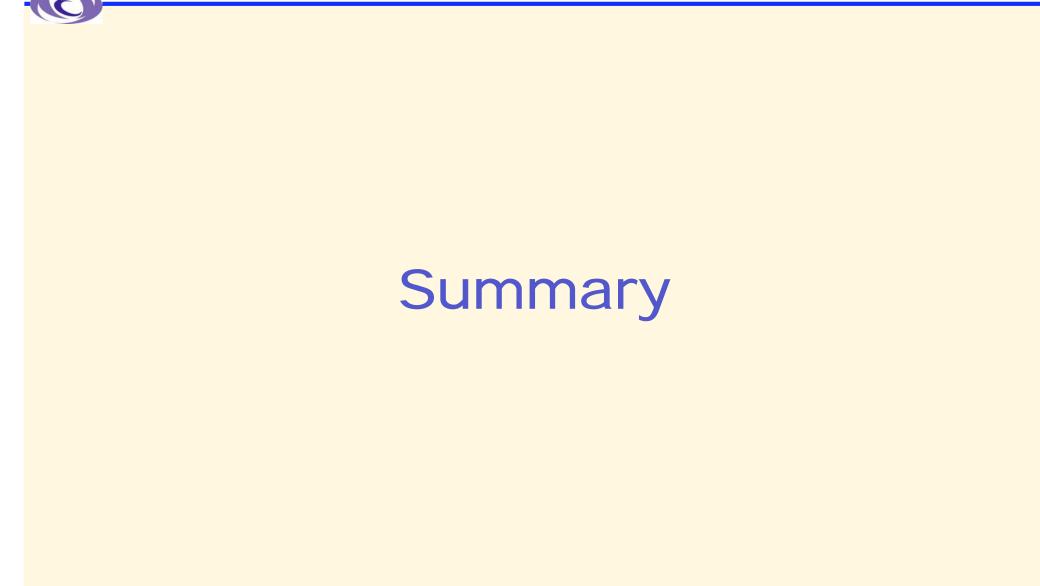
- **≍Linux (OSI) port**
- Gateway applications

***ATCA implementation possible**

For ILC (?), microTCA (?)

Software redundancy

EPICS IOC redundancy is slightly complicated


- Since it has name resolution facility
- More advanced

Linac/KEK controls is simpler

- Normally we run several middle-layer control servers
 - **¤on separate machines**
- For EPICS gateway
 - **We need redundant IOC technology**

Other existent servers

- Recently more careful in redundancy
 - **Like dchpd**
 - **Redundancy and replications**

Phronesis

Aristotle's view of wisdom.

Contrary to Sophia; the ability to understand the universal truth

Phronesis is the ability to find a way to achieve an overall goodness

Summary

EPICS and SAD made KEKB a great success, but other accelerators have different criteria

- Accelerator controls design needs a balance between many aspects
- There are many good technologies waiting to be utilized
- Also more reliability features needed
- Share more experiences

Phronesis

