ATCA, HPI, AIS - open specifications for HA applications

Artem Kazakov
SOKENDAI/KEK
kazakov@gmail.com
TIPP09
Outline

- New CS and ATCA as platform of choice
- Service Availability Forum (SAF)
- Hardware Platform Interface (HPI)
- Application Interface Specification (AIS)
ILC Control System requirements

- Overall Control system availability goals of 99% -99.9%
 - For a system of a ~1200 “shelves” it translates to 99.999% availability for each “shelf”

- Serviceability and manageability
 - 30 km long underground tunnel

- Standardization
 - For simplified development and Quality Assurance

- Modularity - Both Hardware and Software

- And many other including redundancy, high speed serial links…
ATCA as a platform for ILC control system

- Advanced Telecom Computing Architecture (ATCA) embodies most of the required features
- Designed to provide 99.999% availability
- Modularity
 - separate back-pane and front
 - HOT SWAP
- Redundancy - Power supply, cooling, serial back-pane
- Extensive manageability
- And more
Service Availability Forum

- Objectives:
 - Develop and publish high service availability and management software interface specifications
 - Promote and facilitate their adoption by the industry

- Members - Leading telecom industry companies

- Primary specifications:
 - HPI - Hardware Platform Interface - for hardware resource monitoring and management, similar to IPMI
 - AIS - Application Interface Specification - for software monitoring and management
SAF Specifications

- Represent current “best-practices” of Telecom Industry in building HA applications
 - And this may be applicable for accelerator control systems as well
- C and Java API
- Provide a framework and guidelines for development of HA applications
Basic architecture
HPI - Hardware Platform Interface

- Inventory & configuration - what components are in the system HW, serial numbers, location

- Control - Hot Swap, Power up/down, reset, firmware upgrade, watchdogs...

- Monitoring - temperature, voltage, fan speed, LED...

- Portable - Abstract, support various factors/architectures
HPI - Reasons to use

- Hides platform specific or proprietary features from application
- Eliminates proprietary application interface - allows fast porting to other platforms
- Remote control via HPI-SNMP
HPI usage example - Redundant EPICS IOC

- ATCA shelf with two CPU blades
- Running two Redundant EPICS IOC
- HPI is used to monitor the health of each blade
- This information is used to make decision on failover
HPI usage example - Redundant EPICS IOC

- HPI is Platform independent
- Instead of ATCA we can use "conventional" server PC
- OpenHPI has /dev/sysfs mappings on Linux
AIS - Application Interface Specification

- AIS is a set of open standard interface specifications
- AIS defines an API for middleware between the applications and the operating system
- It is divided into the areas:
 - Availability Management Framework
 - Cluster Membership Service
 - Log Service
 - Event Service
 - Lock Service
 - Checkpoint Service
 - Message Service
 - Information management Model
Further topics

- AIS benefits and reasons to use
- AIS implementations?
 - OpenSAF, OpenAIS, OpenClovis
- Examples of AIS usage
 - “cold” standby redundant IOC - Claude Sanders APS
 - EPICS caGW - proposal - Claude Sanders APS
 - My experience?
Conclusion

- ATCA is being actively adopted by accelerator people, new boards being developed, Physics ATCA initiative.

- As for the software HPI & AIS offer extensive base for hardware and software management. And a framework and guidelines for development of HA applications.

- HPI & AIS Possible areas of usage in accelerator controls:
 - IOCs
 - Nameservers
 - Gateways
 - Embedded CPUs (FPGA)
Open questions