TUPEB054 Design of Positron Damping Ring for SuperKEKB

M. Kikuchi, T.Abe, K. Egawa, H. Fukuma, K. Furukawa, N. Iida, H.Ikeda, T. Kamitani, K. Kanazawa, K. Ohmi, K. Oide, K. Shibata, M. Tawada, M. Tobiyama, D. Zhou, KEK, High Energy Accelerator Research Organization

Abstract: Super-KEKB, an upgrade plan of the present KEKB collider, has recently changed its baseline-design from "high current" option to "nano-beam" scheme. The current is relatively low(4A/2.3A for LER/HER ring) compared to that of the high-current option(9.4A/4.1A), while the vertical beam size is squeezed to 60 nm at the interaction point to get the high luminosity. Since the Tousheck lifetime of LER is very short(600 sec), the intensity of the positron beam is as high as 8 nC/pulse. The emittance of the injected positron beam should be small enough to be accepted in the aperture of the LER.A damping ring has been proposed for the high-current option[1]. In this paper an updated design optimized to the nano-beam scheme is presented.

Table 1: Parameters of the injected beam				Table 2: Parameters of the Damping Ring			
	before ECS	after ECS	unit	Energy	1	.1	GeV
Energy	1.1		GeV	No. of bunch trains	2		
Repetition frequency	50		Hz	No. of bunches / train	2		
Emittance	1.7		μ m	Circumference	135.50207		m
Energy spread [†]	1.67	0.50	%	Max. stored current	70.8		mA
Bunch length [†]	2.67	11.7	mm	Energy loss / turn	0.091		MV
Number of bunches	2			Hor. damping time	10.87		ms
Bunch spacing	98	98		Injbeam emittance	1700		nm
Bunch charge	8		nC	Emittance (h/v)	41.4/2.07		nm
† defined as extension that contains 99.7% divided by 6.				Energy spread	5.5×10^{-4}		
			Coupling	5		%	
			Extracted emittance (h/v)	42.5/3.15		nm	
			Cavity voltage	0.5	1.0	MV	
				Bucket height	0.81	1.24	%
				Synchrotron tune	0.0152	0.0216	
				Bunch-length	11.01	7.74	mm
				Phase advance/cell (h/v)	64.39/64.64		deg
			Momentum compaction	0.0141		e	
				Bend-angle ratio	0.35		
				No. of normal-cells	40		
				RF frequency	509		MHz
				Chamber diameter	34		mm

Linear Optics

- Optics requirements
- Large acceptance
- Fast Damping

Solution: FODO with Reversed Bend

• Short damping time with lower field

(1-r)/(1+|r|) = 0.48

 $2\pi\rho = 17 \text{ m}$

B = 1.35 T

 $r = 0.35, \rho = 2.7 \text{ m}, L_1 = 100 \text{ m}$

r: Bend ratio = B1/B2(Normal FODO $\longrightarrow r = -1$) L_1 : Total length except bend length

Non-linear Optics

- FODO
- Dynamic aperture is limited by the systematic multipole errors.
- CSR dominates the longitudinal impedance.
- Ring parameter was optimized to increase the threshold of the CSR induced instability.
- Proposed ring parameters satisfy the requirements