

Performance of the cERL LLRF System

Compact ERL (Energy Recovery LINAC)

Takako Miura (KEK)

Introduction of cERL

Compact ERL (**cERL**) has been constructed as a test facility of a 3-GeV ERL future plan.

Current status of high power RF sources

	Buncher	Inj-1	Inj-2	Inj-3	ML-1	ML-2
Cavity	NC	2cell-SC	2cell-SC	2cell-SC	9cell-SC	9cell-SC
Cavity Voltage	114 kV	0.7 MV	0.7 MV	0.7 MV	8.6 MV	8.6 MV
Field Gradient (Desgin)		3 MV/m (7.5MV/m)	3MV/m (7.5MV/m)	3MV/m (7.5 MV/m)	8.6 MV/m (15MV/m)	8.6 MV/m (15MV/m)
Q _L	1.1×10^{5}	1.2×10^{6}	5.8×10^{5}	4.8×10^{5}	1.3×10^{7}	1.0×10^{7}
Cavity Length	0.068 m	0.23 m	0.23 m	0.23 m	1.036 m	1.036 m
RF Power @Low beam current	3 kW	0.53 kW	2.6 kW		1.6 kW	2 kW

200kW RF power is necessary for each inj. cavity.

LLRF'15, Shanghai, Nov 3-6, 2015 (T. Miura)

Digital LLRF System at cERL

LLRF'15, Shanghai, Nov 3-6, 2015 (T. Miura)

Digital LLRF Boards

Total 11 boards are used for operation.

	BUN	lnj1	Inj2	Inj 3	ML1	ML2
RF FB board	FBO	FB1	FB2 (Ve	ec-sum)	FB4	FB5
Tuner board	TN0	TN1	TN2	TN3	TN4	TN5

- Embedded Linux is working in the PowerPC on FPGA.
- Each board acts as an **EPICS IOC**.
- Data acquisition is performed through GbE bus on the backplane.

 $\Delta f = 65$ Hz for ML cavities (Q_L=10⁷)

Narrow bandwidth for f_0 =1.3 GHz

 $\Delta \theta = \theta_f - \theta_c$: The phase difference between the input RF and the cavity pickup signal

$$tan\Delta\theta \approx 2Q_L \frac{\Delta f}{f}$$

To keep resonance frequency, tuner should be controlled to maintain $\Delta\theta$ at zero.

DAC (piezo scan) Block diagram of frequency FB control

Field Feedback Control

Results of Frequency Control

Performance of RF Feedback Control

Monitored with IIR LPF(5kHz)

		lnj1	Inj2 & Inj3	ML1	ML2		
	Amplitude	0.006% rms	0.007% rms	0.003% rms	0.003% rms		
	Phase	0.009° rms	0.025° rms	0.010° rms	0.009° rms		
			Requirements: 0.1%rms,0.1deg.rms for cERL 0.01%rms,0.01deg.rms for 3GeV-ERL				
ML2	1.6439 1.6438 1.6437 1.6437 1.6436 1.6435 1.6434 0	Amplitude 0.003349%rr	Phase 0.0085591deg.rms 23.02 23.01 23.01 23.01 22.99 22.90 20.90 2				
		msec		msec			

LLRF'15, Shanghai, Nov 3-6, 2015 (T. Miura)

3

Stability of Beam Momentum (1)

Momentum drift in the period of ~15 minutes was observed.

C Reduction of the Effect of Vector-sum Error

If error is included in vector-sum calibration, energy drift can occur. In the region of Inj2 and Inj3 cavities, $\beta < 1$. Transit time is different in each cavity. => weight of vector-sum is different between Inj2 and Inj3.

Measurement after modification of tuner feedback gain for Inj2 and Inj3

Large momentum drift disappeared.

Good stability of beam momentum was achieved. => It was confirmed that the RF field for the beam is stable.

3

Demonstration of Energy Recovery ($I_0 = 30 \ \mu A$)

(Power lost in cavity) = (P_{in} : input power to cavity) - (P_{ref} : reflected power from cavity)

Summary

- RF stabilities satisfied the requirement for cERL, and almost satisfied the requirement for 3GeV ERL.
- The beam momentum jitter of 0.006% rms was achieved.

Future Plan

- Tuner feedback parameters have not been optimized enough.
 We will optimize the tuner control parameters.
- Beam current will increase and burst mode operation is planned.
 Beam loading compensation is necessary.
 [Feng Qiu (KEK), this afternoon]
- The evaluation of the long-term stability is necessary.

Thank you for your attention.