

Disturbance observer-based control in LLRF system in a compact ERL at KEK

Feng QIU (KEK) Nov., 03-07, 2015

LLRF15, Nov. 03-07, Shanghai, China

Main content

- Introduction of LLRF systems in the cERL at KEK.
- Idea of disturbance observer-based control.
- Application of disturbance observer-based control.

Introduction

Compact ERL (cERL) is a test facility for the future 3-GeV ERL project. It is a 1.3-GHz superconducting system and is operated in CW mode.

April, 2013, injector commissioning. Oct. 2013, main linac commissioning.

LLRF (Digital Board)

LLRF (schematic)

Disturbances in RF system

■Main disturbances: High voltage power supply ripples (300 Hz) + burst mode beam-loading (0.5 mA~1mA, 1 ms ~ 2 ms) and Microphonics (DC ~ 500 Hz) [1-3].

Disturbance Observer (DOB)

The disturbances estimate \hat{d} can be evaluated accurately if we "know" the mathematical model of the system (disturbances can be observed).

7

DOB ctrl (conťd)

The disturbances estimate \hat{d} can be removed from FF table, thus the disturbance signal d is rejected.

DOB ctrl (conťd)

The low-pass Q filter is required to keep the DOB controller physically realizable.

The combination of $G_n^{-1}(s)Q(s)$ can be causal.

PI + DOB control

In practical, the combination of DOB control and PI control is applied at cERL LLRF system [1].

Transfer function

@ low frequency: $Q(s) \approx 1$, then $1 - Q(s) \approx 0$

Frequency response from disturbance (d) to cavity pick-up (y)

Application of DOB control

LLRF15, Nov. 03-07, Shanghai, China

Disturbances in RF system

Main disturbances: High voltage power supply ripples (300 Hz) + burst mode beam-loading $(0.5 \text{ mA} \sim 1 \text{mA}, 1 \text{ ms} \sim 2 \text{ ms})$ and Microphonics (DC ~ 500 Hz).

Disturbances 1 (HVPS ripples)

Main disturbances: High voltage power supply ripples (300 Hz) + burst mode beam-loading (0.5 mA~1mA, 1 ms ~ 2 ms) and Microphonics (DC ~ 500 Hz).

Application 1 (HVPS ripples)

Disturbances: high voltage power supply ripples (300 Hz ripples).

LLRF15, Nov. 03-07, Shanghai, China

Disturbances 2 (beam-loading)

Main disturbances: High voltage power supply ripples (300 Hz) + burst mode beam-loading (0.5 mA~1mA, 1 ms ~ 2 ms) and Microphonics (DC ~ 500 Hz).

Application 2 (Beam-loading)

Disturbances: Beam-loading (about 1.6 ms and 800 μ A beam current)

Disturbances 3 (Microphonics)

Main disturbances: High voltage power supply ripples (300 Hz) + burst mode beam-loading $(0.5 \text{ mA} \sim 1 \text{ mA}, 1 \text{ ms} \sim 2 \text{ ms})$ and Microphonics (DC ~ 500 Hz).

Application 3 (Microphonics)

Summary

- Construction of the RF system @ cERL
- Motivation and idea of disturbance control (DOB)
- Successful application of DOB control

Thank you for your attention

LLRF15, Nov. 03-07, Shanghai, China

Reference

- F. Qiu et al., A disturbance-observer-based controller for LLRF systems, in Proceedings of the sixth International Particle Accelerator Conference, IPAC'15, Richmond, USA, 2015 (JACoW, Richmond, USA, 2015), WEPMA054, p. 2895.
- 2. F. Qiu et al., PERFORMANCE OF THE DIGITAL LLRF SYSTEMS AT KEK cERL, in Proceedings of ERL2015, NewYork, USA, 2015 (JACoW, NewYork, USA, 2015).
- 3. F. Qiu et al., Application of disturbance observer-based control in low-level radio-frequency system in a compact energy recovery linac at KEK. PRSTAB 18, 092801(2015).
- 4. X. Chen and M. Tomizuka, Lecture notes for UC Berkeley Advanced Control Systems II (ME233), available at http:// www.me.berkeley.edu/ME233/sp14, 2014.
- 5. Y. Choi, K. Yang, W. K. Chung, H. R. Kim, and I. H. Suh, On the robustness and performance of disturbance observers for second-order systems, IEEE Trans. Autom. Control 48, 315 (2003).

Back up

LLINE 13, NUV. US-UT, Shanghai, China

PI + DOB control

How to improve the disturbance rejection in the DOB control?

@ low frequency: $Q(s) \approx 1$ *, then* $1 - Q(s) \approx 0$

LLRF15, Nov. 03-07, Shanghai, China

Total LLRF diagram

> PI + DOB

LLRF15, Nov. 03-07, Shanghai, China

System Identification

Input white noise in the DAC output and read the response from the ADC?

