

Characterization of microphonics in the compact ERL main linac cavities

Feng QIU (KEK), on behalf of the cERL LLRF group

ERL2019, Berlin (HZB) . Sep. 15 ~ Sep. 20, 2019

Main Content

Introduction

- LLRF and Tuner control system
- RF stabilities of the ML cavities
- Microphonics measurement
- System identification of piezo tuner

Introduction

The Compact ERL (cERL) is a test facility to demonstrate ERL technology. It is a 1.3-GHz superconducting system and is operated in CW mode [1].

Injector consists of four cavities: Buncher (NC), Injector 1 (SC), Injector 2 (SC), Injector 3 (SC).

Main linac (ML) includes two nine-cell cavities (SC).

April, 2013, injector commissioning. Oct. 2013, main linac commissioning. ERL2019, Berlin (HZB) . Sep. 15 ~ Sep. 20

Cavity and RF system

At present, total four kinds of power sources are applied in cERL : 8 kW SSA, 16 kW SSA, 25-kW klystron and 300 kW klystron.

LLRF & Tuner (Hardware)

ERL2019, Berlin (HZB) . Sep. 15 ~ Sep. 20

LLRF & Tuner (Algorithm)

Main Content

Introduction

- LLRF and Tuner control system
- RF stabilities of ML cavities
- Microphonics measurement
- System identification of piezo tuner

RF stabilities (under FB)

RF stabilities of ML1

3

Some components (> 500 Hz) were excited in the cavity phase of ML1 in 2019.

RF stabilities of ML1

Main Content

Introduction

- LLRF and Tuner control system
- **RF** stabilities of the ML cavities

Microphonics measurement

System identification of piezo tuner

Field Scanning (cont'd)

- In 2019, accidentally, we found that the back-ground mircophynics in ML1 depends on its cavity field.
- Field-scanning (under feedback operation).

Field Scanning

Perform the FFT analysis of the detuning under different field, then plot the Map.

ML1 Field Scanning (result)

- → High frequency component's suddenly appears @ ~3.1 MV (Threshold Vc).
- Detuning and RF phase stabilities becomes worse under higher Vc.

Field-detuning Map (ML1 vs. ML2)

- The boundary appeared only in the ML1.
- Why "field dependency microphonics"? The mechanism remains unclear.

Hysteresis Phenomena

Threshold Vc vs. Quench limits

> The value of threshold Vc is probably related with quench limits (remains unclear)?

1500 1000 [Hz] 500	0605 before PS aging 3.07 MV				I: Before pulse (PS) aging					Case	Threshold Vc [MV]	Quench Limits [MV]
1500	1.5	2	2.5	3	3.5	4	4.5	5	5.5	⁶ I	3.07	6.16
1000 [Hz] 1000	0606	<u>0606</u> 3.34 MV-				<i>II:</i> Just after PS aging					3.34	6.51
frequence of	1.5	2	2.5	3	3.5	4	4.5	5	5.5		3.18	6.30
[ZH] \1000	0613 AM		: After	1 wee	ek opera	tion (result i	n t <u>he</u> n	norning)	IV	3.17	6.30
500 500			3.18 M	V				and and a second se Second second s				
0 II	1.5	2	2.5	3	3.5	4	4.5	5	5.5			
[Hz] 1500 1000 ch [Hz]	0613 PM	IV.	After	1 wee	k operat	ion (r	esult in	the af	ternoon)			
500 tedneu	an da sana na sana	wasersw	3.17 M	V Adverseda		مند بني . منظلم الم						
0 E	1.5	2	2.5	3	3.5 Mrc [MAY9]	4 Berlin (4.5 HZB) . Ser	5 5. 15 ~ Se	5.5 ep. 20	6		17

Main Content

Introduction

- LLRF and Tuner control system
- RF stabilities of the ML cavities
- Microphonics measurement
- System identification of piezo tuner

Requirement for system model

Simply increasing the FB gain is NOT a good method, some mechanical modes would be excited and the system therefore oscillated [4].

Advanced control methods (e.g. active compensation method [5], or active noise control [6]) are better choice, for these cases, a system model is usually necessary (or helpful). We have to know the system better.

Identification of the TF Model

3

350 Hz

20

- > Transfer function (TF): Piezo to RF.
- > Excite piezo with sinusoidal signal and sweep the frequency.
- > FFT analysis \rightarrow TF model.

5 Hz

TF Model vs. $\Delta \omega$

Piezo Transfer function is probably related with $\Delta \omega$.

Validation of the TF Model

Response

2

- Excite the system (and model) with square wave.
- ➢ TF Model vs. Actual System.
- ➢ We will optimize tuner control with TF model.

- RF stabilities of ML1 cavity were getting worse due to the deteriorated microphonics in the past 5 years.
- A "field level dependency microphonics" phenomenon was observed in ML1.
- The threshold Vc for the deteriorated microphonics is about 3.1 MV, and it is probably related with quench limits level.
- ➢ We have identified and validate the TF model of the piezo tuner system and we plan to optimize the tuner control with this TF model.

Thank you for your attention

Reference

- [1] M. Akemoto *et al.*, "Construction and commissioning of compact energy-recovery linac at KEK", *Nucl. Instr. Meth.*, vol. 877, pp. 197-219, 2018.
- [2] H. Sakai *et al.*, "Long-term operation with Beam and Cavity Performance Degradation in Compact-ERL Main Linac at KEK", in *Proc. LINAC'18*, Beijing, China, Sep. 2018, pp. 695-698.
- [3] F. Qiu *et al.*, "Status of microphonics on cERL nine-cell cavities" in *Proc. PASJ2019*, Kyoto, Japan, July-Aug. 2019.
- [4] F. Qiu *et al.*, "Progress in the work on the Tuner control system of the cERL at KEK", in *Proc. IPAC'16*, Busan, Korea, May 2016. Pp.2742-2745.
- [5] A. Neumann *et al.*, "Analysis and active compensation of microphonics in continuous wave narrowbandwidth superconducting cavities", *Phys. Rev. ST Accel. Beams*, vol. 13, p. 082001, Aug. 2010.
- [6] N. Banerjee *et al.*, "Active compensation of microphonics detuning in high Q_L cavities", *Phys. Rev. Accel. Beams*, vol. 22, p. 052002, May 2019.