KEK Insight through Accelerators.

UPGRADES OF S-BAND ACCELERATING STRUCTURES AND PULSE COMPRESORS IN THE ELECTRON AND POSITRON INJECTOR LINAC OF KEK

H. Ego, T. Abe, Y. Higashi, T. Higo, T. Yoshimoto, KEK, Japan

Y. Bando, SOKENDAI, Japan

Abstract

New S-band disc-loaded TM01- $2\pi/3$ traveling-wave structures and spherical-cavity-type pulse compressors have been developed for upgrades of the injector linac for SuperKEKB and Photon-factory storage rings in KEK. The structures 2-m long have ingenious disk irises with oval fillets reducing discharge in high-power operation and modulations in radius suppressing beam break-up instabilities arising from HEM11 wake fields. The pulse compressors are of compact spherical-cavity-type resonating at the degenerate TE112 dipole mode with a high Q-value of 98,000 and yield a peak power gain of 6.2. The structures generate an acceleration gradient of 25.9 MV/m in power operation of 40 MW by using the pulse compressor and stably accelerate a two-bunch beam with a bunch charge of 4 nC

KEK electron/positron S-band Injector Linac

	Electron	Positron
Energy [GeV]	7	4
Number of S-band accelerating structures	226	
Operating frequency [MHz]	2,856	
Klystron	40 MW 4 µs 50 Hz	
Charge [nC]	4	4
Normalized emittance H/V [µm rad]	40/20	100/15
Energy spread [%]	0.07	0.16

What happen to the old structures?

Aging deteriorations of many old accelerating structures impossible to be repaired

2nd bunch arrival

Discharge · Reflection

Water leakage

New S-band disc-loaded accelerating structure

RF properties	:	Wake function of HEM11-π
Operating frequency [MHz]	2,856	2 nd bunch arr
Accelerating mode	ΤΜ01 - 2π/3	
Type of structure	Quasi-CG	
Cell iris diameters [mm]	23.340 - 19.234	[≦] 3 10 ²
Mean group velocity / c	0.0117	10.8
Filling time [µs]	0.570	10*0 20 40 60 80
Unloaded-Q	14,000	↓ 3% Time [μs]
Attenuation parameter [Neper]	0.366	HEM11-π wake fields Reduced t
Mean shunt impedance [MΩ/m]	61.7	for 2-bunch beam operation
Energy gain [MeV/MW1/2]	7.87	with a time interval of 96.3 µs

Spherical-cavity-type pulse compressor: SCPC

RF properties (design)		
Operating frequency [MHz]	2,856	
Resonant mode	Spherical TE112	
Unloaded-Q	100,000	↓ 2%
Coupling constant	6.4	
Peak compression ratio	6.2	
Input pulse length [µs]	4.0	
Phase-reversed length [µs]	1.0	
Input power [MW]	40	

WEPA118

· Cooling-water channels formed inside the body

- frequency adjustment by correction machining after STEP1
- Fine frequency and degeneration adjustment by 8 detachable dimpling tuners after STEP2

Beam acceleration by two structures with SCPC

Real time measurement and fine tuning of SCPC Measured beam energy gain in high-power operation Before tuning After tuning

Summary

We have developed new S-band accelerating structures to replace with the malfunctional old ones suffering from aging deterioration. The four pilot structures have the RF characteristics as expected. The S-band spherical single-cell cavity-type pulse compressor was also developed and tuned adequately. The operations at an RF power of 80 MW or more were succeeded for both the structure and the SCPC. They were installed in the injector and are stably in beam acceleration of 20 MV/m. We have finished mass-produced 12 structures in the spring of 2023 and plan to install them in the injector after conditioning.