佐賀シンクロトロン光応用研究施設電子リニアック 2001 年(設計現状)

冨増多喜夫^{1,A)}、安本正人^{B)}、岩崎能尊^{C)}、古賀信幸^{C)}、橋口泰史^{C)}、落合裕二^{C)} ^{A)}自由電子レーザ研究所兼佐賀県シンクロトロン光応用研究施設設計チームリーダー

〒554-0024 大阪市此花区島屋1-1-3 住友電気工業株式会社気付

^{B)} 産業技術総合研究所光技術研究部門

〒305-8568 茨城県つくば市梅園1-1-4

^{C)} 佐賀県経済部新産業課

〒840-8570 佐賀県佐賀市城内1-1-59

概要

佐賀シンクロトロン光源の電子入射器である 250 MeV リニアックの設計現状と平成 13(2001)年からの 部品発注の予定について述べる。電子リニアックの 長さは高電圧入射部を含めて 28.5m、電子ビームの エネルギーとマクロパルス長は入射時 250 MeV で 1µs、入射時以外では 40 MeV で 13µs、自由電子レー ザー発生などに使用できる。電子ビームは、FELI リ ニアックと同様に 0.6nC の数ピコ秒長ミクロパルス が 22.3125 MHz か 89.25 MHz で続く。ピーク電流は 40 MeV で 60A 以上、250 MeV で 130A 以上を期待し ている。

1. はじめに

佐賀県シンクロトロン光応用研究施設の建設は佐 賀県と科学技術庁によって平成10年に認められ、平 成16年度稼動を目指して施設の基本設計、実施設計 が進められてきた。平成12年度から始まった実施設 計にもとづき、13年から14年にかけて鳥栖市の北部 丘陵地区に約3600平方米の施設建屋が建設される。

佐賀シンクロトロン光源の建設は、部品発注、組 立・調整運転方式で行なう方針が認められ、部品仕 様の決定では実績があり確実に稼働する最高性能の ものが選ばれている。13 年 11 月頃から光源リングや 電子リニアックなどの部品や各種工事が発注され、 14 年 12 月から佐賀シンクロトロン光源装置の組み 立てが始まる。

平成11年度の基礎設計では、1GeVで周長40m程 度の第二世代リングが候補として取り上げられた。 しかし高輝度リングの有用性と九州地区の大学や産 業界の長期活用に期待して、佐賀シンクロトロン光 源として1.4 GeVで周長75.4 m、7.5 T ウイグラーな ど6台の挿入光源を設置できる小型の高輝度リング を設計した^[1]。第三世代の高輝度リングとしては MAX-II (Sweden、Lund大学)の84%と小さく、世界 最小規模での最小エミッタンス・リング(15 nm・rad) を目指している。6台の挿入光源のほかに電子入射 部の直線部ではレーザーを入射し逆コンプトン散乱 によって発生する準単色ッ線^[2]を放射線検出器の校 正線源として活用することもできる。電子入射は予算の制約もあり、電総研で開発した電子リニアック による低エネルギー入射蓄積・加速方式で^[3]、入射器 として 250 MeV 電子リニアックを用い、低エネルギ 一部で二色(3.0~250μm)の赤外自由電子レーザー装置 ^[4]の設置も可能である。

2. 佐賀電子リニアック

電子リニアックの概略構成図を図1に、リニアッ クとビームの主要なパラメータを表1と2に示す。 電子リニアック主要部の構成は FEL 研とほぼ同様で、 長寿命(千時間以上)の熱陰極電子銃からの 600 ps パルス長で 1.2 nC の電子バンチを、適切な集束系に より低エミッタンスに保ちながら約 10 ps パルス長 の 0.6 nC バンチに短バンチ化できる 6MeV バンチャ -^[5]、13µs 長の出力平坦度が 0.1%以下のパルスマイ クロ高周波源[6]のほかに、電子入射時の高エネルギー 加速が可能な1µs長の平坦度0.3%以下のマクロパル ス高周波源を備えている。13µs 長パルス・マイクロ 波源には FEL 発生用に開発されたクライストロン E3729(13µs - 36 MW ; 24µs - 25MW)^[7]を、1µs パル ス・マイクロ波源にはクライストロン E3712(4µs-80 MW)を使用する。電子リニアックのビームは、数ピ コ秒長にバンチ化された 0.6 nC バンチの列で、FEL 実験時にはクライストロン E3729 のみを運転するの で 0.6 nC バンチの列が 22.3125MHz、又は 89.25 MHz で13 µs 続く。このマクロパルスが1~10Hz で繰り返 す。FELI リニアックでは 30 MeV で 60A を、144 MeV で132Aのピーク電流を実現しているので^[8]、40 MeV で 60A 以上、250 MeV で 130A 以上を期待している。

バンチャー(BU)へのマイクロ波を第1加速管と分け合うのでなく、第2加速管と分けるようにしたのは、BUへのパワー供給を変化した時の第1加速管への影響を少なくするためである。

リングへの電子入射はマクロパルス長1µs の短パ ルス運転で、250 MeV 電子リニアックからのビーム は数ピコ秒長にバンチ化された0.6 nC バンチの列が 22.3125 MHz(44.8 ns 間隔)で1秒毎に1µs 続く。

¹ E-mail: tomimasu@sweet.ocn.ne.jp

図1:佐賀電子リニアック構成図

Gun	thermionic triode	(EIMAC 646B)
	injection energy	120 keV
	trigger pulse	150 V - 0.6 ns pulse
	(89.25 M	Hz or 22.3125MHz)
	micropulse charge	e 1.2 nC
	micropulse separe	tion 11.2 ns or 44.8ns
	macropulse durati	on 13µs
	repetition frequen	cy 10 Hz
Prebuncher		re-entrant type
	frequency	714 MHz
	Q-value	~2000
	Peak field	80 kV
Buncher		standing wave type
	frequency	2856 MHz
	energy	~5 MeV for 2 MW rf
	energy spread	100 keV (FWHM)
Accelera	ting waveguide	travelling wave type
	Length & number	~3 m x 6
RF powe	r at injection	36 MW + 80 MW
	at application	36 MW FEL

表 1 : Main parameters of Saga linac

Electron energy at injection	250 MeV		
Energy spread(FWHM)	0.5 %		
Peak current	130 A		
Beam radius	0.5 mm		
Normarized emittance	25x10 ⁻⁶ m-rad		
Micropulse charge	0.6 nC		
Micropulse duration	4 ps		
Micropulse separation	44.8 ns		
Macropulse duration	~1µs		
Macropulse repetion frequency	1 Hz		
Electron energy at FEL application 40 MeV			
Energy spread(FWHM)	~1 %		
Peak current	60 A		
Beam radius	0.5 mm		
Normarized emittance	25x10 ⁻⁶ m-rad		
Micropulse charge	0.6 nC		
Micropulse duration	6 ps		
Micropulse separation	11.2 ns		
Macropulse duration	~13µs		
Macropulse repetion frequency	10 Hz		

表 2 : Beam parameters of Saga linac

リングへの電子入射量は放射線遮蔽も考慮して毎 秒約12 nC (3W)以下を予定している。

リニアックによるリングへの低エネルギー入射の 例は、電総研(現産総研)での NIJI-I~IV, TERAS へ の 150 - 310MeV 入射の他に CAMD(ルイジアナ)の 200MeV、LNLS(カンピーナス)の 170MeV (最近 120MeV から増強)がある。300mA 以上の蓄積電流 を得るには最低 250MeV 程度の入射エネルギー必要 とされている^[9]。

3. 電子リニアックの発注・組立調整予定

3.1 発注

- 14年2月 リニアック入射器(電子銃、プリバンチャー、 バンチャー)、加速管、架台、ビームモニター 等の発注
- 14年3月~4月 各種温調冷却水源、配管工事、等の発注 RF系 部品、クライストロン、パルス変調器、グリド パルサー等の発注リニアック真空系、電磁石系、 ビーム制御系等の発注(リングの真空系、電磁 石系、ビーム制御系と発注)各種電磁石配線工 事、各種制御系配線工事、等の発注
- 14年4月~5月 リング入射系ビームライン発注
- 3.2 組立・調整
 - 15年3月
 温調冷却水源、配管の組立・調整 (局操)
 15年4月~5月
 - リニアック入射器、加速管、架台、等の据付 基準点設定 ビームモニターの位置合わせ
 - 15年6月~7月 リニアック RF 部品、クライストロンとパルス 変調器の組立・調整 (遠操・局操) リニアック真空槽の組立、真空立ち上げ 各種電磁石と架台の組立、位置合わせ 各種電磁石電源据付配線工事 インタロックを含む各種制御系配線工事
 - 15 年 8 月~10 月 リニアック電子銃及び加速管のエージング(遠 操)

- 15年9月~10月
 入射系ビームライン組立、真空立ち上げ、調整
 (遠操・局操)
- 15年11月~ リニアック・ビーム加速テスト(遠操)
 ○ 15年12月~
 - リングへのビーム入射・ビーム蓄積(遠操)

設計段階における川崎重工業㈱、石川島播磨重工 業㈱、三菱電機㈱、㈱東芝、日新電機㈱、日本高周 波㈱、日本真空技術㈱、㈱トーキン、テクノ電気工 業㈱、帝国電機㈱、東京電子㈱、工藤電機㈱、㈱岡 崎製作所、多田電機㈱、パルス電子㈱、㈱佐電工、 住友電気工業㈱、㈱日建設計,等の関係各位のご協力 に感謝する。

参考文献

- T. Tomimasu et al., "Saga synchrotron light source I (design study)". Abstract of the Asian Forum on Synchrotron Radiation (Hiroshima Univ., Jan. 14-16, 2001) 19-1~3.
- [2] H. Ohgaki et al., "Linearly polarized photons from Compton backscattering of laser ligh for nuclear resonance fluorescence experiments" Nucl. Instr. Meth. A353 (1994) 384--388.
- [3] H. Takada et al., "Effects of Increasing Injection Repetition Rate of Low-Energy Injection into a Compact Storage Ring". Jpn. J. Appl. Phys. 28, L1304 (1989).
 [4] A. Zako, et al., "Simultaneous two-color lasing in the
- [4] A. Zako, et al., "Simultaneous two-color lasing in the mid-IR and far-IR region with two undulators and one RF linac at the FELI". Nucl. Instr. & Meth. A429 (1999) 136-140.
- [5] T. Tomimasu, et al., "Strong focusing system of FELI 6-MeV electron injector used for ultraviolet range FEL oscillation". Nucl. Instr. & Meth. A407 (1998) pp. 370-373.
- [6] E. Oshita, et al., "24-MW, 24-µs PULSE POWER SUPPLY FOR LINAC-BASED FELs". IEEE Proceedings of PAC' 95, Dallas, May 1-5, 1995, pp. 1608-1610.
- [7] Y. Ohkubo, et al., "S-band Long Pulsed Klystron for the FELI Linac". Proceedings of the 20th Linear Accelerator Meeting in Japan (FELI, Osaka, Sept. 6-8, 1995) pp. 72-74.
- Meeting in Japan (FELI, Osaka, Sept. 6-8, 1995) pp. 72-74.
 [8] T. Tomimasu et al., "Linac-based UV-FEL pacropulse shape and gain estimate". Nucl. Instr. Meth. A429 (1999) 141-145.
- [9] H. Saisho and H. Takada, "KANSAI MEDIUM-SCALE SYNCHROTRON RADIATION FACILITY" Proceedings of the International Symposium on Medium-Scale Synchrotron Radiation Facilities in Asia (Hiroshima Univ., July 5, 1990) pp.168-177.