KEKB 8GeV LINAC 大電力高周波源の現状

松本 利広¹、道園 真一郎、中尾 克巳、福田 茂樹 高エネルギー加速器研究機構 〒305-0801 茨城県つくば市大穂 1-1

概要

KEKB 8GeV リニアックは 1998 年9月より B 物理 実験のために 8GeV の電子ビームと 3.5GeV の陽電子 ビームを供給している。ビーム加速には、59 台の大 電力高周波源が使用され、入射開始以来 2001 年 3 月 末までに約 18,000 時間の運転が行なわれている。本 稿では、大電力高周波源の使用状況、運転管理、故 障等の現状について報告する。

1. はじめに

KEKB 8GeV リニアック^[1]は、1998年9月より8GeV の電子ビームと 3.5GeV の陽電子ビームを KEKB リ ングへ入射している。リニアックは、ビームを加速 するための大電力高周波源として平均 41MW(最大 46MW)のピーク電力を持つ59台の大電力クライス トロン^[2]を使用している。また、高周波出力を増幅さ せるために、高周波パルス圧縮器(SLED)を採用し ている。

KEKB リングへの入射が開始される直前に高周波 源のコンディショニングの状況について報告を行なった^[3]。KEKB リングのコミッショニング開始以来、 2001 年 3 月末までに約 18,000 時間の運転がなされて いる。本稿では、この間の大電力高周波源の運転状 況(故障等)や、安定にマイクロ波を供給するため の運転維持の現状について報告を行なう。

2. 大電力高周波源

2.1 大電力クライストロン

リニアックでは大電力高周波源として、40MW ク ライストロン(PV3030A3,PV3030A4:三菱電機; E3754:東芝)、及び50MWクライストロン(PV3050: 三菱電機;E3730:東芝)を用いている。これらの 40MWおよび50MWクライストロンの仕様を表1に 示す。

これらのクライストロンは、クライストロンテス トホールにおいて納入検査終了後、クライストロン アセンブリに組み込まれる。アセンブリは、クライ ストロン、ヒータートランス、パルストランス、パ ルストランス用タンク、集束用電磁石から構成され、 パルストランスは絶縁油中で使用される。製作され たアセンブリは、テストホールにおいて高圧動作試 験を行なう。その際、全てのクライストロンについ て 46MW の高周波出力を確認し、またビーム電流と 高周波出力の関係を測定している^[4]。

表1: クライストロンの定格性能 : ()は最大値		
	40MW	50MW
	クライストロン	クライストロン
運転周波数	(2,856±1) MH z	\rightarrow
ビーム電圧	285(310) kV	315 kV
ビーム電流	319(362) A	370 A
ピーク電力	40(50) MW	50 MW
効率	44 %	\rightarrow
繰り返し	50 pps	\rightarrow

2.2 大電力高周波源の現状

98 年秋 KEKB リングへの本格的な入射が開始され た以降の大電力高周波源の変更は、以下の通りであ る。

(1)これまで大電力高周波源は 25pps で運転されてい たが、50pps 運転へと変更になった(1998 年 9 月)。 (2) 5-8 ユニットを ECS へのパワー供給へ用いていた が、新規に ECS 用に 6-1 ユニットを設置し、5-8 ユニ ットは通常の加速ユニットへ変更になった。これに より、全ユニット数は 59 台となった(1999 年夏)。 (3)2-1 ユニット加速管放電により、安定な陽電子入射 を妨げる事態が発生した。それまでの立体回路の構 成を変更し、新設した 1-8 ユニットで 2-1 ユニットの 後半部へパワーを供給させるようにした。その際、 4-4 ユニットを撤去、1-8 ユニットへ移設した(2000 年 3 月)。

図1:クライストロンアセンブリ

¹ E-mail: toshihiro.matsumoto@kek.jp

3. クライストロン使用状況

3.1 クライストロン運転時間分布

現在、(2001年3月31日)、クライストロンギャラ リーにおいて、59本のクライストロン(PV3030A3: 17本; PV3030A4:1本; E3754:4本; PV3050:12 本; E3730:25本)が運転に使用されている。

図2: クライストロン運転時間分布 (2001年3月31日現在)

図2に運転に使用されているクライストロンの運転時間分布を示す。図に示されるように最小200時間から最大29,000時間と幅広く、22,000時間と4,000時間にピークを持っている。4,000時間でのピークは、 昨年夏の保守期間中に交換したクライストロンに寄るものである。22,000時間のピークは、KEKBリングへの運転が開始される直前(1998年)に新規設置された A~C セクターのクライストロンのものである。これ以上の運転時間を持つクライストロンは、 KEKBリングへの入射が開始されるまで、25ppsで運転されていたものである。

3.2 クライストロン運転管理

クライストロンの運転管理には、以下のものを実 施している。

(1) VSWR Down 頻度による充電電圧の管理

現在、大電力高周波源には VSWR メーターが据え 付けられ、常時 VSWR を監視している。導波管やク ライストロン RF 窓を保護し、入射を安定に行なうた めに VSWR が 1.4 を越えた場合、インターロックに よりクライストロンへのトリガー信号が一時的に(5 秒間) OFF になり、パワーが供給されない仕組みに なっている。通常はそのまま自動復帰するが、VSWR が多発した場合には、手動で PFN の充電電圧(E_{PFN}) を下げて、安定になったことを確認してから徐々に E_{PFN}を上げるなどの対処をしている。

1週間当り VSWR のインターロックで 50 回以上ダ ウンする場合には、E_{PFN} を下げて VSWR ダウン頻度 の推移をモニターしている。今までのところ、ギャ ラリー全体の 59 台のクライストロンで VSWR によ るダウン頻度は、1 週間あたり 400 回程度(2.4 回/時 間)に抑えられている。

(2) パービアンスの履歴測定

ギャラリーで稼動しているクライストロンについ て、定期的にビーム電流、ビーム電圧の観測を行い、 パービアンスの時間変化により、クライストロンの 動作状態の記録を行なっている。

図3:エミ減クライストロンのパービアンス及び 高周波出力の時間変化

図3でビーム電流の取れなくなった(エミ減)クラ イストロンの履歴を示す。17,000時間を過ぎたあた りからビーム電流が取れなくなり、20,000時間を超 えて急激にパービアンスが減少し始めた。23,000時 間当りで一度ヒーター電流を上げることによりビー ム電流は一時的に回復したが、直ぐに減少し始めた。 (3) クライストロン RF 窓の温度、放射線測定

クライストロンのビーム電流、ビーム電圧の測定 と同時に、クライストロン RF 窓の温度と窓付近の放 射線の測定を行なっている。特に温度上昇が 20℃以 上になった場合には、窓にダメージがあると考えて、 交換の候補にしている。

3.4 クライストロンの交換

エミ減等の理由により運転に支障が生じたクライ ストロンは以下の手順で交換を行なう。

(1) 立体回路(加速管側の真空に対して仕切っている導波管 RF窓とクライストロン RF窓の間の領域)の真空パージを行なう。この時、導波管窓にリークがあった場合に対処できるように、粗排気系を立ち上げておき、対象となる加速管の前後のゲートバルブをリークの無いことが確認できるまで閉じておく。
(2) クライストロンは専用の治具を用いて設置され、その後リーク試験、ベーキング(120℃:6時間)後に電圧が印加される。クライストロンの撤去作業開始からここまでに大体1日を必要とする。

(3)高圧印加時には、E_{PFN}を 25kV に設定し、手動 減衰器を用いて徐々にクライストロンへ高周波を入 力していく。減衰が最小(700W 程度の高周波入力) になった後、高周波出力の飽和点へと入力を調整し つつ、徐々に E_{PFN}を45kVを目標値にして上げていく。 (4) E_{PFN}とビーム電流の相関を測定して、テストホ ールでの試験結果を元にして高周波出力の見積りや パービアンスの測定を行なう。

以上の手続きを経て大電力高周波源の復帰となる。 復帰に要する時間は8時間を1シフトとして、(1)(2) に3シフト、(4)に1シフト、(3)については、負荷側 の状態(真空の悪化や VSWR)に左右されるが、平 均8シフト程度で、合計で12シフト(4日)である。

3.4 クライストロンの故障

1998 年9月から 2001 年3月末までに28 台のクラ イストロンアセンブリの交換を行なった(年平均11 台)。交換理由の内訳を表2に示す。クライストロン が直接の原因による交換は17 台であり、クライスト ロン以外のアセンブリ構成部によるものが11 台であ った。以下に交換理由の内容を記す。

(1) ミッション不良:稼動後比較的短い時間で電子 銃のビーム電流低下を起こしたもの。原因は、カソ ードのロット不良と考えられている。この11本は、 同時期に製造されたカソードと判明しているが、エ ミッション不良の原因は、まだ未解明である^[5]。

(2) 真空悪化: クライストロン内部真空は、イオン ポンプで1µA以下の状態に保たれているが、インタ ーロックによる制限値である10µAを超えたもの。

(3) パルストランス碍子破損:大電力高周波源を構成するパルストランス内の碍子が、絶縁不良により破損を起こしてその結果沿面放電が生じた。碍子について現在調査中である。

(4) アセンブリ旧型:大電力高周波源の構成(パル ストランス等)が旧型のままであったもの。

(5)絶縁油劣化:アセンブリ用タンク内の絶縁油が 劣化を起こしたもの。今回の場合では、絶縁油に水 が混じったことにより乳濁化したものとパルストラ ンス内のカットコアと1次側のリターン用銅板の接 触による放電によるものであった。

(6)クライストロン RF 窓過熱: クライストロン RF 窓周の冷却水に 20℃の温度上昇があったために交換 を実施した。この時、RF 窓にリークが確認された。

表2: クライストロンアセンブリ交換理由

	ノ人決生山
交換理由	台数
エミッション不良	11
真空悪化	4
パルストランス碍子破損	3
アセンブリ旧型	3
ビーム電流減少(エミ減)	2
絶縁油劣化	2
出力発振	2
クライストロン RF 窓過熱	1

交換を実施した 28 台のうち、エミッション不良、 真空悪化、エミ減の 17 台に加えて、6 台のクライス トロンが交換作業中に RF 窓リークによる内部真空 悪化のため今後の使用が不能となった。図4に使用 不能クライストロンの寿命分布を示す。

図4:使用不能クライストロンの寿命分布

カソードのロット不良が原因のエミッション不良 によるものが、10,000時間以下に固まっている。真 空悪化を起こした1例(4080時間)を除き、20,000 時間当りを中心に幅広く広がっているが、統計数が 十分ではなく、収集されたデータには 50pps 運転以 前の運転時間が含まれているため、今度もデータを 蓄積していく必要がある。特に、クライストロン交 換作業中に真空悪化が見つかったというものは、RF 窓の寿命に直接関係するため、特に重要である。

4. まとめ

KEK 8GeV リニアックは 59 台の大電力高周波源を 用いて運転している。安定な大電力高周波の供給の ために定期的にエミッションや RF 窓の温度等の測 定を行い、運転に支障が生じた場合にはクライスト ロンアセンブリの交換を実施している。現在、本格 的な運転を開始してから 18,000 時間経過しており、 その間に合計 28 台のクライストロンアセンブリを交 換している。今後もデータを蓄積していくことで大 電力高周波源の性能評価や運転管理に活用される。

参考文献

- [1] KEK B-factory Design Report, June, 1995.
- [2] S.Fukuda et al., "Design and evaluation of a compact 50MW rf sources of the PF linac for the KEKB project", Nucl. Instrum. and Meth. A368(1996) 561-571.
- [3] T.Matsumoto et al., "Status of High-Power RF Sources in the KEKB 8GeV Linac", Proceedings of the 23rd Linear Accelerator Meeting in Japan, Sept. 1998..
- [4] K.Nakao et al., "High-Power Klystron Test in the New Test Hall of the KEKB 8GeV Linac", Proceedings of the 23rd Linear Accelerator Meeting in Japan, Sept. 1998.
- [5] K.Nakao et al., "Performance of the emission degraded klystron in the temperature limited region", Proceedings of the 24th Linear Accelerator Meeting in Japan, July. 1999.