阪大・産研・電子ライナックの現状

田川 精一¹、加藤 龍好、楊 金峰、山本 保、誉田 義英、古澤 孝弘、柏木 茂、

木村 徳雄、吉田 陽一、磯山 悟朗

大阪大学産業科学研究所

〒567-0047 大阪府茨木市美穂ヶ丘8-1

概要

平成14年度はこれまで電子ライナックを維持管理 してきた放射線実験所が、新たに加速器量子ビーム 実験室として再スタートした最初の年であると共に、 ナノテクノロジー研究をより推進するために、電子 ライナックの高性能化や新たな電子ライナックの設 置が行われた年となった。本稿では平成14年度に行 われた共同利用の状況、保守状況、これまで共同利用 に供してきたLバンドライナックの改良点、また、 新たに設置が認められた、レーザーフォトカソード RFガンを備えたSバンドライナックについて概要 を述べる。

1.はじめに

阪大・産研では平成14年度に新たに産業科学ナノ テクノロジーセンターが設置された。これに伴い、 放射線実験所が廃止され、放射線実験所が有してい たLバンド、Sバンドの2台の電子ライナック(以 下ではライナック)も他の装置と同様、産研附属産 業科学ナノテクノロジーセンター加速器量子ビーム 実験室の装置となり、加速器量子ビーム実験室員に より運転、保守・管理されている。ライナックを用 いた研究に関しては、これまでの歴史的な経緯も踏 まえ、テーマを加速器量子ビーム実験室内だけに限 らず、これ以外からも受け入れ、共同利用を行うこ ととし、その実質的な世話を加速器量子ビーム実験 室員が行っている^[1]。

ライナックを用いた研究、特に電子ビームに誘起 される反応に関する研究は、電子線を使った極微プ ロセスを研究する上で非常に重要である。このため 平成14年度はナノテクノロジー関連の研究をより一 層発展させる目的で、ライナックの改良や新しいラ イナックの設置が認められ、ライナックの高性能化 が行われた。このため、平成14年度は電子ライ ナックを用いた共同利用は前半で終了し、その後 は装置の建設に伴う作業を行った。

以下ではライナックの現状報告と、L バンド ライナックにおける改造の概要、新たに設置され たレーザーフォトカソードRFガンを備えたSバ ンドライナックについて紹介する。

2.電子ライナックの利用状況・保守

2.1 Lバンドライナックの利用状況

平成14年度におけるLバンドライナックの運転、 保守の状況に関し、月別、モード別に表したものを 図1に示す。Lバンドライナックは単バンチモード (FEL発振実験のためのマルチバンチモードを含 む)、過度モード、定常モードの3種類の運転モー ドで利用可能であるが、平成14年度は定常モードで の利用はなかった。前期は18の一般共同利用課題と 7つの特別共同利用が採択され、保守作業の20シフ トを含む117シフトが配分された。後期は次節で述 べる改修工事のため、利用が10月のみに制限され、 使用可能なモードも過度モードのみとなった。工事 作業と並行しての利用となるため新規の利用は募集 せず、限られた条件下で利用可能な13の一般共同利 用課題と1つの特別共同利用が採択され、保守作業 の6シフトを含む19シフトが配分された。1年間の運 転日数は110日、通算の運転時間はおよそ1500時間 程度であった。

Sバンドライナックについては、11月まで運転 を行い、装置の故障、実験時間の制約等で実際に運 転した時間は約250時間であり、すべて陽電子関連 実験に利用された。

2.2 保守および故障の状況

Lバンドライナックについて、平成14年度は定期 的な保守作業を月に2日程度行い、夏季には長期の 保守を行った。長期の保守期間中には、ライナック 全体の整備点検と劣化した電子銃陰極の交換と立ち 上げ作業を行った。故障としては、落雷による瞬時 停電のため、5 MWクライストロンに電力を供給し ているAVRシステムが停止したことと、電磁石電流

図1 平成14年度Lバンドライナック月別運転日数

¹ E-mail: tagawa@sanken.osaka-u.ac.jp

図2 Lバンドライナックのブロック図

の閾値を読み取っているIC回路が不調になり、照射 室の選択ができなくなったことなどが挙げられる。 いずれも、1~2日で復旧し、共同利用のためのマシ ンタイムに大きな影響は無かった。

Sバンドライナックにおいては、RF出力の減 少がみられ、不良個所を探した結果、クライストロ ンにRFを供給するクライストロンパルサー内のモ ジュレーターの部品である4極管(4PR1000A)が 原因であることがわかった。これの予備品がなかっ たためKEKからお借りし実験を再開した。

3. Lバンド電子ライナックの高性能化

産業科学ナノテクノロジーセンターにおけるナノ テクノロジー関連の研究を推進するために、Lバン ドライナックを改修する予算が認められ、高性能化 のための改造が行われた。Lバンドライナックのブ ロック図を図2に示す。改造の主な目的は、フェム ト秒の時間領域で起きる超高速現象を解明するため にライナックの動作を高度に安定化し、高い精度で 再現することである。そのため、これまで用いてき た20 MWと5 MWの2台のクライストロン装置を廃し、 新たに導入された30 MWクライストロンと高安定な パルスモジュレータに R F 源を1本化した。これに 伴い、 R F 電力伝送路に、 バンチャー系(PB, B)へ R F電力を分岐・制御するための電力分割器と可変減 衰器を追加した。また、これまでサブハーモニック バンチャー(SHB)は、電源から供給されるRF電 力のパルス長が短いため、空洞内の加速電場が安定 な領域で使用することができなかったため、この SHB電源を長パルス電力が供給できるものに更新し た。さらに、これらRF電力を受ける加速空洞に温 度安定度 ± 0.03 という高安定な冷却水を供給で きる新しい冷却水システムを導入した。また、これ ら更新機器を統括制御するために、産業分野で実績 のあるプログラマブル・ロジック・コントローラ (PLC)を主体とした計算機制御システムを一部に導 入した。また電磁石電源類やプリバンチャー系の可 変減衰器と位相器、計算機制御システムと同じPLC をベースにしたライナック施設の安全系インター ロックシステムなどを更新した。

4.レーザーフォトカソードRF電子銃を 用いたSバンド電子ライナック

4.1 概要

パルスラジオリシスにおける時間分解能の向上と 利用実験の拡大を目指してレーザーフォトカソード RF電子銃と新しいSバンドライナックを導入した。 クライストロンはこれまでと同じPV3035(三菱電 機)で、RF電力伝送路も一部従来のSバンドライ ナックと共用しており、運転はこれまで陽電子発生 用に利用されてきたSバンドライナックと、利用時 に切り替えて行う。新たに設置したSバンドライ ナックを図3に示す。

レーザーフォトカソードRF電子銃から発生した 低エミッタンス電子線パルスをRF電子銃下流に設 置されたライナックのRF位相を調整することに よってエネルギーモジュレーション化し、最後に磁 気パルス圧縮法を用いてフェムト秒までパルス圧縮 する。本装置では、従来のL-バンドライナックを比 べ、本システムでは電子線パルス長が数十フェムト 秒までに圧縮でき、低エミッタンスのため高輝度に なるため、高S/N光吸収分光の実現が期待できる。 またパルスラジオリシスの性能向上のために、電子 線パルスの発生、加速および圧縮を高精度で制御す る必要がある。このため高速PLCを用いた制御シス テムを導入した。また、冷却水システムとクライス トロンシステムを安定化するための改善も行った。

4.2 電子銃部

電子銃には住友重機械製のBNL - GunVIタイプの レーザーフォトカソードを用いている。この加速空 洞はS-バンドの1.6セルと採用され、電子発生用の フォトカソードの材質は無酸素銅である。フォトカ ソードの光源としては、全固体ピコ秒レーザーを用 いた。本RF電子銃では、レーザー入射角度70°の 入射ポートが取り付けられているが、レーザー光を そのままに入射するとカソード面でのレーザー光形 状が楕円になり、発生した電子ビームの形状も楕円

図3 レーザーフォトカソードRF電子銃を用いたフェムト秒ライナックとパルスラジオリシス

になり、エミッタンス増大の原因になる。そのエ ミッタンス増大を避けるために、本システムではR F電子銃下流の真空チェンバーに光反射用のプリズ ムを設置し、図3に示すようなカソード面に対して 垂直のレーザー照射方法を採用した。

4.3 加速管部

加速管は三菱重工製の長さ2 mのS-バンド進行波 型を採用した。加速管とRF電子銃には、同一クラ イストロンから2分配されたRFがそれぞれ供給さ れる。加速管とRF電子銃に供給されるRFピーク パワーはそれぞれ25 WWと10 WWであり、RFパルス 幅は4 µsとなっている。運転繰り返しは10 Hzであ る。電子加速エネルギーは最大20 MeVである。RF の位相調整は、ハイパワーRF伝送ラインに取り付 けたフェーズシフターを用いて行う。そのRF位相 調整により電子パルスがエネルギーモジュレーショ ン化される。電子ビームを安定化させるためには、 クライストロンのRF出力を安定化させることによ、 クライストロンのRF出力を安定化させることによ り出力パルス電圧の安定度を0.2 %以内に抑えた。

4.4 パルス圧縮部

電子パルス圧縮は、45°偏向磁石2台と四極電磁 石4台と構成された磁気パルス圧縮システムを用い て行われている(図3)。これまで磁気パルス圧縮 法を用いてL-バンドライナックから発生した電子パ ルス圧縮実験を行った結果では、-バンドライナッ クから発生したエネルギー19.1 MeV、規格化エミッ タンス100 mm-mrad、パルス幅6.6 psの電子パルス を850 fsが得られているが^[2]、本システムでは、 レーザーフォトカソードRF電子銃を利用している ため、L-バンドライナックに比べてビームのエミッ タスが1/100まで改善でき、シミュレーション結果 からは電子パルスの圧縮を数十フェムト秒まで可能 であることが示された。

5.まとめ

平成14年度はLバンドライナックの高性能化が認 められ、冷却水や電源部等が高性能のものに更新さ れた。これによりパルス安定度が改善され、データ の収集に大きく寄与するものと期待される。また、 新たにレーザーフォトカソードRFガンを備えたS バンドライナックも設置され、これまで以上の超高 速反応過程も研究できる環境となった。これらを用 いた本格的研究は本年度から行われる予定であり、 多くの成果が得られるものと期待される。

参考文献

- [1] Y. Yoshida, et al., "阪大産研Lバンド及びSバンドラ イナックの現状", Proceedings of the 27th Linear
- Accelerator Meeting in Japan, Kyoto, Aug. 7-9, 2002.
 [2] T. Kozawa, Y. Mizutani, K. Yokoyama, S. Okuda, Y. Yoshida and S. Tagawa, "Measurement of Far-Infrared Subpicosecond Coherent Radiation for Pulse Radiolysis", Nucl. Instrum. Meth., A429 (1999) 471-475.