KEK電子陽電子LINACのCバンドテストベンチの状況

大越 隆夫¹、明本 光生、池田 光男、柿原 和久、紙谷 啄哉、設楽 哲夫、 杉村 高志、竹中 たてる、中尾 克巳、中島 啓光、福田 茂樹、本間 博幸、 松本 利広、道園 真一郎、矢野 善治、大澤 哲 高エネルギー加速器研究機構 加速器研究施設 〒305-0801 茨城県つくば市大穂1-1

概要

KEKの電子陽電子線形加速器(リニアック)は KEKBの入射器として現在運転している。KEKB次期計画(SuperKEKB)として陽電子のエネルギーを 3.5 GeVから8 GeVへと増強してピーク・ルミノシティを10³⁵cm⁻²s⁻¹を目指す計画の検討が進められている。加速エネルギーを増強するためにリニアックの 陽電子加速ユニットをSバンド(2856 Mhz)からCバンド(5712 Mhz)に変更し、加速ユニット数を2倍にする計画をたてた。本報告は変更を可能とするために必要なデータ、機器の開発を行うためのCバンドのテストベンチについて報告する。

1. はじめに

KEKB次期計画(SuperKEKB)では陽電子のエネルギーを3.5GeVから8GeV、電子のエネルギーを8GeVを3.5GeVに変更し、ピーク・ルミノシティを10³5cm²s¹を目指す計画の検討が進められている。このためリニアックではSバンドの陽電子加速ユニット24台をCバンドに変更し、ユニット数を48台にする計画を立てた□。Cバンドでビーム加速を行ったところは今までに無く、加速管をはじめSバンドのスケールダウンではすまない。このため、テストベンチを至急立ち上げ、予備試験を行い、本年夏の保守期間内に加速管をビームラインに設置し、ビーム加速試験が出来る状態にすることになった。

2. 加速管組立室

加速管組立室はリニアックの南端にあり、加速管の設置・交換を円滑に行うためにリニアックトンネル床(地下)と同じ高さにある。トンネルと加速管組立室を隔てる壁と搬入用扉は放射線遮蔽のため2mのコンクリートであるが加速管組立室は放射線監視区域である。加速管組立室はトンネル内使用を当るである。加速管をはじめとする機器・部品の測定室を地では大きなの加速管をはじめとする機器・部品の測定室を地では大りのための加工等も行うところである。リニア・改り組立室内にSバンド加速管のAgingを行うためにより組立室内にSバンド加速管のAgingを行うためにコンクリートブロック(厚さ:0.5m)により放射線遮蔽をしたエリアを設け、内部に加速管を設置し、

加速管組立室に隣接したクライストロン組立ホールから大電力のマイクロ波の供給を受けAging・試験を行ってきた。

3. テストベンチ

Cバンドのテストベンチ (図1) は大電力クライストロン、同パルス電源、低電力励振系、真空機器、測定装置等とSバンド加速管Agingで使用したコンクリートブロックのエリアとからなり約72 m² (12m×6m) を使用している。放射線安全対策のためコンクリートブロックの増強を行い東側のコンクリート厚みを1mし、西側・北側にはフェンスを設け立ち入りを制限した。

大電力クライストロンを加速管組立室内に設置した理由は立体回路に使われるベンドの数、フランジの数が多くなると反射波(VSWR)が発生しやすくなることがSバンド加速管Agingの経験より推測されためである。ただし、真空に重要な立体回路長はクライストロンの設置位置、マイクロ波圧縮装置(SLED、計画中)の設置位置により決定した。このため、加速管試験時の立体回路長は加速管入口まで約11mである。

今回のテストベンチの構成部品は新規に設計・製作したもの、使用実績が少ないものが多く試験しながらテストベンチを組み上げていくことになった。本年2月初めまでは小型化したクライストロン用パルス電源 $^{[2]}$ の調整を行い、2月からはクライストロン の試験を開始 $^{[3,4]}$ した。しかし、ベーテホールカプラ製作に不具合が生じ、JLC-Cバンドグループより借用しての試験の開始となった。4月よりレゾナントリングを用いた高周波窓の試験 $^{[5]}$ が行われ、テストベンチ・本ユニットに使用出来る高周波窓が出来た。6月より導波管のAgingを行ない目標の42MW(50pps,2 μ sec)まで達成した。

4. 立体回路

4.1 導波管

Cバンドの周波数は5712MHzであるため導波管サイズはWRJ-5とWRJ-6の2サイズとなる。採用サイズはWRJ-5とした。絶対的な理由は無いが有効な点として伝送損失が小さく、最大電界強度が低いことである。加えて、大電力RFでの使用実績(KEK JLC-C

-

¹ E-mail: takao.oogoe@kek.jp

バンド)があることがあげられる。好ましくない点は周波数帯の上限に近い、重量が重くなる等がある。加速管に40MWの入力が必要な時10mの導波管を使用するとクライストロン出力電力は各々43.0MW、44.1MWとなりWRJ-6を使用すると1.1MW大きいクライストロンが必要になる。

表1:導波管の特性比較[6.7]

	WRJ-5	WRJ-6
サイズ (mm)	47.55×22.15	40.00×20.00
周波数帯(GHz)	$3.95 \sim 5.85$	$4.90 \sim 7.05$
電場強度(MV/m)	13.10	15.80
伝送損失(dB/m)	0.032	0.043
(%)	7.1	9.4

P=100MW, 導波管長=10m

4.2 ベンド・フランジ

CバンドのEベンド・Hベンドの設計はSバンドの2 倍の周波数である、設置場所はSバンド導波管が設置されていた経路であることからベンド曲げ半径はSバンドのE105E105.4E107.3E

フランジはテストベンチとこの夏にリニアックに設置する試験器はメルディニアンフランジ^[8]とするが、その後については検討をふまえて考えたい。雄雌があることにより立体回路設計の煩わしさがある。設置もしにくい。

4.3四方向性結合器

高周波電力測定用の方向性結合器はセラミック窓を使用せずアンテナ部が真空になっているタイプの開発を依頼し、レゾナントリングで使用し良好であった。コネクターを接続の関係でN型にしたため傾きを持たせて製作することに成り、ロウ付けが厄介になってしまった(コネクターは真空型)。進行波と反射波を観測するため基本は2個1組で使用する。

表2:ベーテホールカプラ性能表 周波数 5712±10MHz 結合度 60±0.5dB 方向性 30dB以上

図2:ベーテホールカプラ

図1: テストスタンド

4.4 項空引口

導波管には真空引口を持つものが何種類かある。真空引口は全て電界と平行なE面に付いており、内部はマルチホールと呼ばれ、蜂の巣のように孔が無数に空いている(図3)。以前、Sバンドでは五徳目と呼ばれるスリット状の隙間を使用していたがこれではマイクロ波が真空ポート側に漏れイオンポンプに悪影響を与えることが解ったためそのため数ミリの孔を無数に空けることにより解決した。Cバンドテストスタンドのマルチホール孔径は φ 4mm深さ 2mmとした。孔数は真空引口フランジにより異なる。

図3: 真空引口 (マルチホール)

テストベンチの真空系はクライストロン出口直後にクライストロンの高周波窓を保護するためにイオンポンプと非蒸発ゲッタポンプ (NEG) が設置され、導波管が水平に走るところに今回開発した高周波窓が設置され窓の両側の十字導波管に同じくイオンポンプと非蒸発ゲッタポンプが設置されている(写真2)。高周波窓と加速管等の中間位置にイオンポンプがあり、加速管試験の時には加速管の入出力部に各1台イオンポンプを設置する。それ以外の試験ではイオンポンプ1台を試験品の近くに設置する。

左側にNEG 右側にイオンポンプ 中央に高周波窓

図4:高周波窓と真空系

5. 電気・冷却水

電力としてはおおよそ三相60KVA、単相15KVAが必要である。冷却水は120l/minが準備してありクライストロン用パルス電源関係、加速管関係と測定用電磁石に使用する。電気伝導度0.1siemens以下で温度安定性30±0.2℃(実際は大きな負荷変動が無ければ±0.02℃程度)の純水である。

Cバンドクライストロン用パルス電源は電圧400V 入力で考えられているので三相400Vラインの確保が 必要である。また、冷却水もクライストロン専用に 用意を考えなくては成らない。

6. 予定とまとめ

テストホールは順調に整備が進んでいる。また、 予定されていた試験もオンスケジュールで進んでい る。試験中に出た問題点は改修等を加え改善されて いる。

これからの試験予定は、セットアップが終了した 3dB HybridとRF Dummy Load⁹¹試験である。RF Dummy Load単体での試験を行った後3dB Hybridに接続して試験を行いたかったが時間の制約で同時に大電力試験を行うことに成った。この状態でクライストロンの最大電力を吸収出来れば設計値を満足する。低電力測定では問題が無いことを確認している。

7月初めからはCバンド加速管^[10]の試験である。現在、加速管は出来上がり低電力での測定を行っているところである。8月終わりにはビーム加速テストのためにリニアックのビームラインに設置される。

参考文献

- [1] 福田茂樹,他, "SuperKEKB計画の為のKEK電子陽電子ライナックCバンド化計画".in these precedings
- [2] 中島啓光,他,"小型パルス電源の特性と今後の課題".in these precedings
- [3] 松本利広,他,"Cバンド50MWクライストロンを用いた大電力高周波源(I)-低電力励振系の構築". in these precedings
- [4] 松本利広,他,"Cバンド50MWクライストロンを用いた大電力高周波源(I) –大電力試験".in these preeedings
- [5] 道園真一郎,他,"Cバンド・ミックス高周波窓の開発".in these precedings
- [6] 山口誠哉,他,"高エネルギー加速器セミナー、加速管・立体回路".OHO'02, Aug 26-29, 2002
- [7] 阿部英太郎,"マイクロ波技術"東京大学出版会
- [8] 柿原和久,他,"C-band矩形導波管用フランジの検討".in these preedings
- [9] 杉村高志,他,"SuperKEKBに向けたC-band Dummy Loadと3dB Hybrid Couplerの開発".in these preeedings
- [10] 紙谷宅哉,他,"SuperKEKB計画のためのCバンド加速管開発に付いて".in these precedings