DESIGN AND CONSTRUCTION OF A SPIRAL MAGNET FOR A HYBRID ACCELERATOR

H. Tanaka¹, T. Nakanishi

Mitsubishi Electric Corp., Advanced Technology R & D Center, 8-1-1, Tsukaguchi-Honmachi, Amagasaki, Hyogo 661-8661, Japan

Abstract

A hybrid accelerator using an FFAG injection scheme is proposed for industrial applications. The bending field is constant at an injection time as an FFAG accelerator, and the bending field changes after the injection time as a synchrotron. Both rf accelerator and induction accelerator are practicable. We have designed a very compact 1 MeV electron induction accelerator. Peak current and the repetition are 8 A and 1 kHz, respectively. Beam simulation results show that large beam size at injection time is gradually reduced to small size during acceleration. Proto-type five-sectors spiral bending magnet has been designed and constructed. Outer diameter of the magnet is as small as 100 mm, and weight is about 3 kg. Magnetic measured results show that rapid cycle repetition can be practicable.

FFAGとシンクロトロンのハイブリッド加速用スパイラル電磁石の試作

1. はじめに

我々は、産業・医学利用を想定したコンパクトで 低コストな円形誘導加速器のフィージビリティ・ス タディーを実施している。ベータトロン加速器を ベースに、新たなスパイラル磁場収束方式、最新の パワー半導体・磁性材料技術、電磁界シミュレー ション技術を融合し、パームトップ型の電子加速器 を実現することが目標である。

加速方式は、ハイブリッド加速という新しい加速 手法を用いる[1]。ハイブリッド加速手法は、入射 時はFFAGモードで偏向磁場一定の加速を行い、その 後、シンクロトロンモード(誘導電界加速の場合は ベータトロンモード)で偏向磁場を変化させる加速 手法である[2]。

図1:ハイブリッド加速手法の加速シナリオ[2] (縦軸は磁束密度、横軸は時間。Bending Field:パル ス偏向電磁石の励磁パターン、Acc. Core Field: 誘導電界発生用加速コアの励磁パターン)

パームトップ型加速器のキーデバイスが、パルス (交流)電磁石である。本論文は電子1MeV加速を想定 した、スパイラル形状のパルス電磁石を設計、試作 した結果に関し記述する。

2. スパイラル形状・パルス電磁石

パームトップ型加速器で用いる偏向電磁石は以下 の特徴を有する必要がある。

- (1) 1kHzの交流励磁
- (2) スパイラル形状の複雑な磁極形状
- (3) 0.5T以上の高磁場
- (4) 低鉄損
- (5) 低コスト

交流励磁を行う電磁石材料として、積層鋼板、フェ ライト等がある。積層鋼板はコンパクトで複雑なス パイラル形状を実現することが難しい。また、フェ ライトは飽和磁束密度が低く、且つ、複雑な形状を 高精度で製作するにはコストがかかり望ましくない。 我々は、上記の5項目を満たすと考える複合軟磁性 材料MBS-318(三菱マテリアル(株))を用いパル ス磁石のプロト機製作を試みた。

2.1 磁石設計

ハイブリッド加速手法を用いたパームトップ型誘 導加速器のビーム収束方法として、ラディアルセク ター型とスパイラルセクター型が考えられる。ラ ディアルセクター型は逆偏向磁場が必要で、加速器 全体寸法が大きくなる。パームトップ型加速器はコ ンパクトであることが第一命題であり、スパイラル セクター型を採用した。スパイラル磁極形状はビー ム軌道解析により決定した。パームトップ型加速器

¹ E-mail:Tanaka.Hirofumi@wrc.melco.co.jp

のプロト機の基本パラメータを表1に、スパイラル セクター電磁石の基本パラメータを表2[3]に示す。 Φ100のコンパクトなパルス電磁石で、電子を1MeV まで加速可能な設計である。セクター数を減らすと 電磁石として作りやすいが、1セルでの水平方向の 位相の進みが大きくなりすぎるので、セクター数5 を採用している。

図2に、電磁界設計とビーム軌道解析で決定した パルス電磁石の磁極形状、及び、最内周と最外周の 周回平衡軌道を示す。また、図3に、加速中に電子 ビームのビームサイズが小さくなっていく様子を ビームシミュレーションした結果を示す。入射完了 直後(T=0)はFFAGモードで広がっていたビームが、 加速中に序序に収束していく様子がわかる。入射完 了直後は電子のエネルギーが低く、ビームサイズを 広げることで、空間電荷効果を抑制している。加速 後に収束する軌道半径は、偏向電磁石と加速コアの 励磁パターンを変えることで、軌道半径の外側、内 側のいずれに設定することも可能である。なお、本 加速器は電子ビームを出射せずに、金属ワイヤー等 の内部ターゲットに周回ビームを衝突させてx線を 発生させる。よってビームサイズを加速中小さくす ることが加速器性能上必須であるわけではない。

表1:1MeV電子加速器プロト機の基本パラメータ

最大エネルギー	1 MeV
入射エネルギー	60 keV
加速種	電子
磁石形式	スパイラル・セクター
K値	0.8
入射/出射半径	23mm/28.3mm
パッキングファクター	0.3
スパイラル角	35度
セクター数	5
ベータトロン振動数	水平:1.85、垂直:0.64
繰り返し	1kHz

表2:スパイラルセクター電磁石の基本パラメータ

磁極外径	Φ100
磁極高さ	8 0 mm
重量	2.8kg
磁極数	5
磁場強度	0.59T
磁極間隙	5.4~7.5mm
コイルターン数	7turn/pole
磁極半径	20.5~32.6mm
通電電流	250A
インダクタンス	72 μ H
磁極材質	MBS-318(軟磁性材料)

2.2 パルス電磁石の試作と特性試験

パルス電磁石のスパイラル磁極とリターンヨーク は、軌道平面上で2分割した2個の円筒材料をエン ドミルで加工し製作した。磁極面は±50µmの精度 で加工した。軟磁性材料の加工性は良く、複雑なス パイラル形状の磁極加工は大きな問題なく終了した。 但し、磁極端は加工により欠け易いので、量産時に は最終磁極形状を圧縮整形により作成するのが望ま しいと考える。図4に試作したパルス電磁石の全体 組み立て写真と軌道平面で2分割した写真を示す。 磁極側面の穴は磁場測定時にホール素子を挿入する 為に設けた。図5にパルス電磁石の励磁電流と磁束 密度の関係を示す。フルスペックの電流は250Aであ るが、所有する電源の制約から50Aまで通電を実施 した。周波数0.4kHz(磁場測定用ホール素子のバン ド幅の上限)でも、磁場特性上の大きな問題は発生 していない。軟磁性材料メーカが出している材料物 性値から、フルスペックで運転しても大きな磁場分

布の乱れは発生しないと考えている。なお、フルス ペック時の磁石の温度上昇は60度程度と予想され、 10分以上の長時間運転を実施するには空冷ファン等 の冷却機構が必要になると考えている。

パルス磁界の分布測定は非常に難しく、動磁界を 高精度に計算可能な磁界計算コードを用いた方が精 度が出る可能性が高い。今回のプロト機はスパイラ ル偏向電磁石部分のみを試作したが、加速コアとス パイラル偏向電磁石を組み合わせた実機モデルの設 計では、静磁界解析コードのみでなく、動磁界解析 コードも併用して磁極設計を行う予定である。

図4:試作したパルス電磁石の全体組み立て写真 (上図)と軌道平面上での分解写真(下図)

図5:パルス電磁石の励磁電流と磁束密度の関係

3 まとめ

パームトップ型電子加速器のパルス電磁石の設計、 試作、磁場測定を実施した。繰り返し1kHzのスパ イラル形状パルス電磁石が製作可能である見通しを 得た。パームトップ型電子加速器実現の為に、残る 主要技術課題は、(1)薄肉真空ダクト、及び、(2)高 繰り返しパルス電子銃の2点である。本加速器は高 周波電源を必要とせず、IGBTを用いた簡単な電磁 石電源で運転可能であり、量産時にはオーダレベル の低コスト化が可能であると考えている。

謝辞

本論文のパルス電磁石は日本原子力研究所のH1 5年度黎明研究の助成を受けて製作した。またパル ス電磁石の製作は(株)トーキンマシナリーの尾形氏 等が実施した。この場を借りて感謝致します。

参考文献

- [1]田中博文他、医療・工業用ラップトップ円形誘導加速 器の検討、日本物理学会第58回年次大会、(2003).
- [2]田中博文他、FFAGとシンクロトロンのハイブリッド加 速手法,Proceedings of the 14th Symposium on Accelerator Science and Technology, p 78, (2003).
- [3]田中博文他、ラップトップ型電子円形誘導加速器の研 究、第8回黎明研究報告会、日本原子力研究所、p32、 (2004).