An Operators Tool for Advanced Synchrotron Injection Diagnostics

W. Bayer, G. Fröhlich, W. Kaufmann, U. Scheeler, P. Schütt, Ch. Wetzel

> GSI Helmholtzzentrum für Schwerionenforschung GmbH Darmstadt

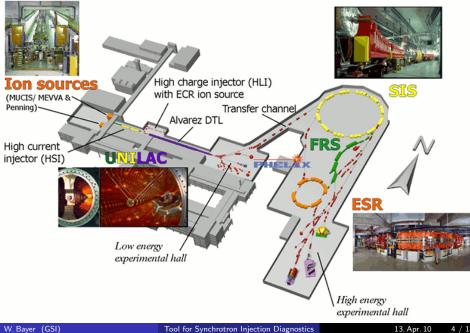
> > - WAO 2010, Daejeon, South Korea -

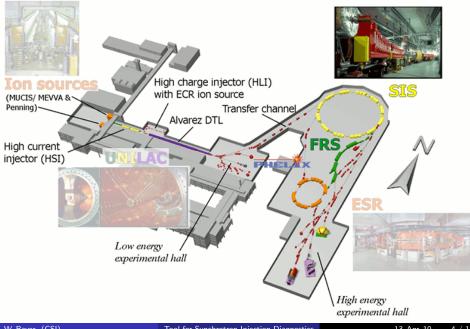
13. April 2010

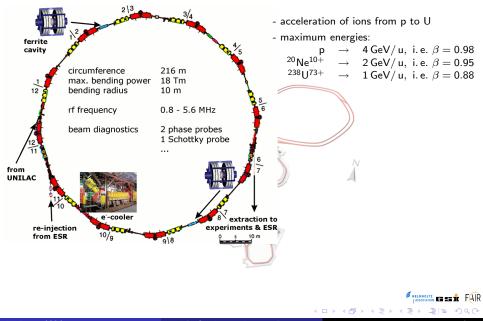
13. Apr. 10 1 / 18

- Introduction to GSI
- 2 Main Control Room
- 3 Why & How of Developing a Tool for Injection Diagnostics
 - Beam Injection to SIS
 - Beam Diagnostics
 - History & Challenges of Development
- 4 SIS-BeamDiagnostics Software & Results
 - Examples of Beam Setup
 - Examples of Monitoring

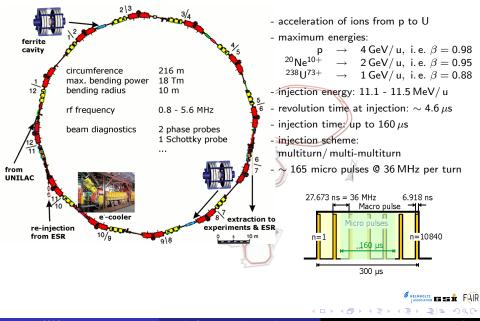
5 Conclusion


Introduction to GSI

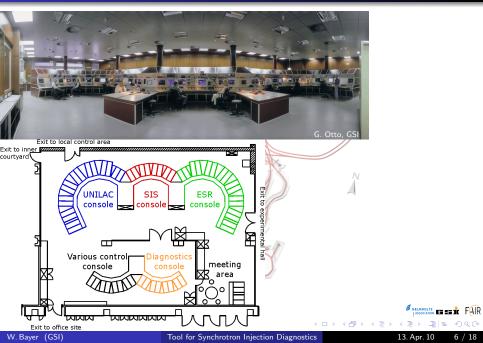

Introduction to GSI


Accelerators at GSI

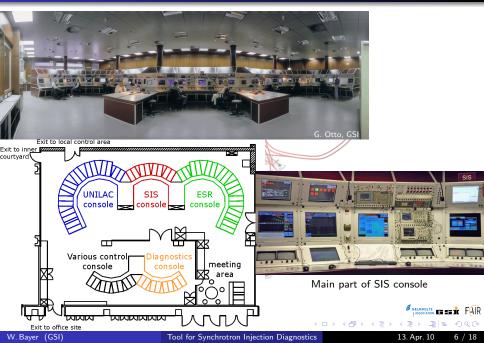
Accelerators at GSI



Schwerlonen (Heavy Ion) Synchrotron SIS 18


13. Apr. 10 5 / 18

Schwerlonen (Heavy Ion) Synchrotron SIS 18



13. Apr. 10 5 / 18

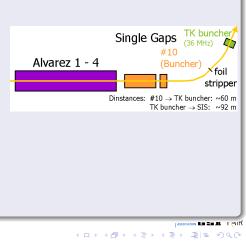
Main Control Room

Main Control Room

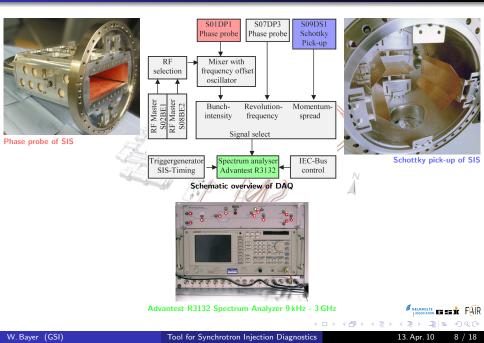
Operation of SIS

Maximisation of Beam Intensity During Beam Setup

- optimisation of focusing & steering along transfer channel (TK)
- observation of beam intensity measured by a phase probe

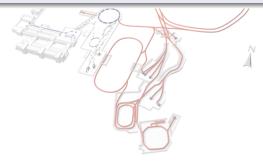

Longitudinal Optimisations

- adjustment of injection energy
- energy spread of UNILAC: ±100 keV/u acceptance of SIS: ±23 keV/u
- adaption of bunch length with 2 bunchers
- observation of Schottky signals


Monitoring

O

- beam intensity
- Δp/p



Beam Diagnostics

For Usage During Normal Operation

- development of front-end software to setup SA & DAQ
- requirements:
 - simplification of operation
 - suitability for monitoring

For Usage During Normal Operation ...

- development of front-end software to setup SA & DAQ
- requirements:
 - simplification of operation
 - suitability for monitoring

Boundary Conditions

- front-end software must run on VMS (in future Linux)
- programming language Fortran95 (preferably)
- GUI development in X11/Motif (widget-set & widget construction tool to build code developed in-house)
- GUI intuitively operable
- Iook of new GUI similar to existent ones

History of Development

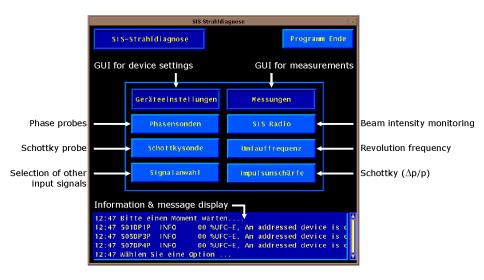
- 1989 1990: comissioning of SIS (high sensitve intensity measurement & Schottky scans with phase probe)
- 1990/1991: installation of dedicated Schottky pick-up probe & adequate DAQ
- up to 2005: Schottky analysis as expert tool mainly for machine development

History of Development

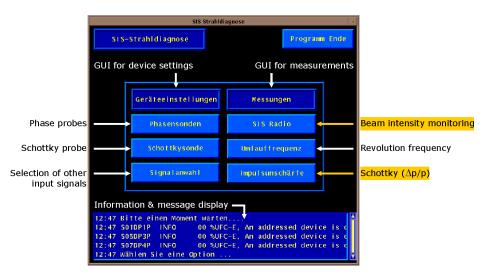
- 1989 1990: comissioning of SIS (high sensitve intensity measurement & Schottky scans with phase probe)
- 1990/1991: installation of dedicated Schottky pick-up probe & adequate DAQ
- up to 2005: Schottky analysis as expert tool mainly for machine development
- since 2001 upgrade measures to increase beam intensity
- improvement of beam quality \Rightarrow increased quality of machine setup
- mid 2005: decision Schottky analysis for non-experts

History of Development

- 1989 1990: comissioning of SIS (high sensitve intensity measurement & Schottky scans with phase probe)
- 1990/1991: installation of dedicated Schottky pick-up probe & adequate DAQ
- up to 2005: Schottky analysis as expert tool mainly for machine development
- since 2001 upgrade measures to increase beam intensity
- improvement of beam quality \Rightarrow increased quality of machine setup
- mid 2005: decision Schottky analysis for non-experts
- mid 2006: 1st version of SIS-BeamDiagnostics software
- 2006 2009: testing phase; acquisition of requests for modifications
- 1st half-year 2009: revision of software
- since mid 2009: more & more usage of software during operation


Challenges During Development

- essential topics of 1st specification not realised as main control software of SIS is more or less standalone software
- GUI in parts not realised as specified due to limited possibilities of VMS, X11/Motiv & widget-set
- communication with Advantest 3132 SA via GPIB difficult, not all commands work
- main problem: Advantest 3132 SA cannot be set into local operation mode via GPIB command (contrary to manual)
- shift-work of DAQ developer impeded communication with software developer
- $\bullet\,$ software development additionally slowed down due to low priority work (\rightarrow no official request)

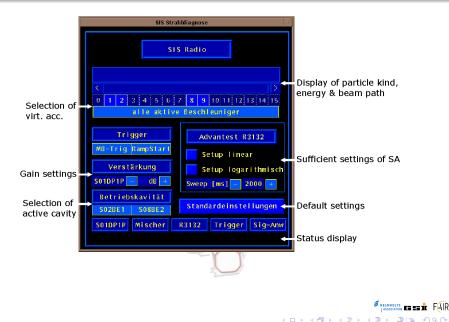

13. Apr. 10

11 / 18

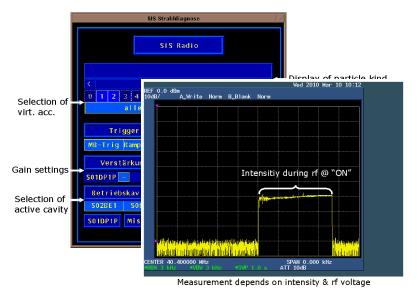
A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

E SQA

W. Bayer (GSI)


Tool for Synchrotron Injection Diagnostics

13. Apr. 10 12 / 18


A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

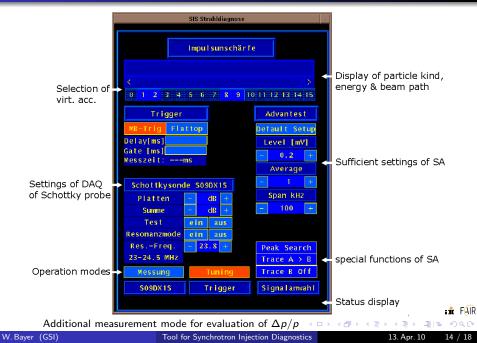
E SQA

SIS-BeamDiagnostics Software – Intensity Measurement

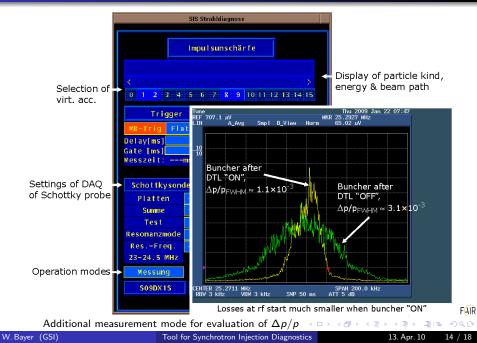
SIS-BeamDiagnostics Software – Intensity Measurement

 \Rightarrow much higher sensitivity than that of a beam current transformer $\mathcal{F}_{\text{Intermediate Based and the sensitivity}}$

< □ > < 凸


W. Bayer (GSI)

Tool for Synchrotron Injection Diagnostics


13. Apr. 10 13 / 18

= 990

SIS-BeamDiagnostics Software – Schottky Analysis

SIS-BeamDiagnostics Software – Schottky Analysis

Unused foil

Sweeper foil after use with swept beam

W. Bayer (GSI)

13. Apr. 10 15 / 18

< □ > < □ > < □ > < □ >

394 µg/cm²

Unused foil

A D F A B F A B F A B

13. Apr. 10 15 / 18

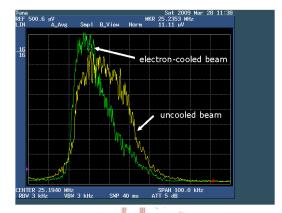
HELMHOLTZ IS IS IN FAIR

三日 のへで

Unused foil

Sweeper foil after use with swept beam

FAIR


Unused foil

Sweeper foil after use with swept beam

Sweeper foil after use with kicked beam

- due to electron cooling beam energy is changes to that of the cooler
- momentum spread is minimized
- Schottky analysis gives information about interaction region of e⁻ & ion beam

W. Bayer (GSI)

13. Apr. 10 16 / 18

Yes, we can...

W. Bayer (GSI)

Tool for Synchrotron Injection Diagnostics

13. Apr. 10 17 / 18

・ロト・4回ト・4回ト・4回ト・4回ト

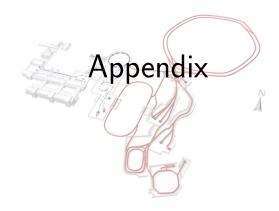
FAIR

Yes, we can...

- development successfull
- measurement & monitoring tools often used by non-experts
- quality of beam delivery increased

but . . .

- was a good piece of work & took longer than estimated
- large commitment on side of operation group to fulfill most of needs
- several revision steps needed
- now it is known what could have been done better/ different


W. Bayer (GSI)

13. Apr. 10 17 / 18

Thank you for your attention!

Thanks to W. Barth, P. Forck, M. Kaiser, B. Kindler, P. Kowina & main control room crew for support of pictures etc.

Questions . .

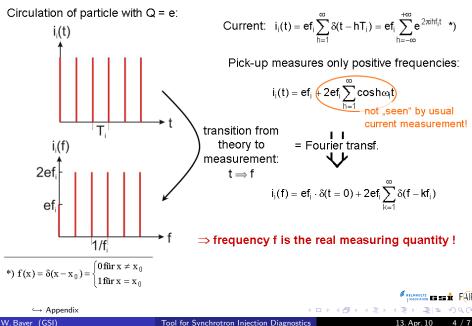
FAIR

▶ 三日 のへで

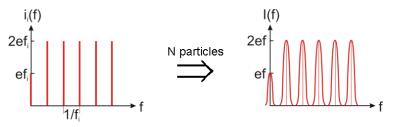
6 The Control System

Principle of Schottky Analysis

- Theory & Measurement for 1 Particle
- Transfer to n Particle


W. Bayer (GSI)

Boundary Conditions for Developments


- components predominantly in-house developments
- communication of devices mainly via MIL-STD-1553 (MIL-Bus)
- data processing mainly via control units & group μ processors
- dedicated beam diagnostics communicate also via RS232, IEEE, LAN, ...
- for dedicated measurements still analog signals are necessary
- but of course usage of digital measurement equipment, too
- front-end software must run on VMS (in future Linux)
- programming language Fortran95 (preferably)
- GUI development in X11/Motif (widget-set & widget constuction tool to build code developed in-house)
- GUI intuitively operable
- Iook of new GUI similar to existent ones

 \hookrightarrow Appendix

Principle of Schottky Analysis – Coasting Beam

Principle of Schottky Analysis – Coasting Beam

- N particles randomly azimuthal distributed along the ring each with a different momentum deviation △p with respect to the reference particle.
- different ∆p corresponds to different ∆f due to the following relation:

$$\frac{\Delta f}{f} = \eta \cdot \frac{\Delta p}{p} \quad \text{with} \quad \eta = \frac{1}{\gamma^2} - \frac{1}{\gamma_{tr}^2} \text{ (frequency dispersion)}$$

 $\eta \rightarrow$ characteristic of the ring!

 \hookrightarrow Appendix

13. Apr. 10

5 / 7

Research at GSI

Nuclear Physics

- nuclear reactions at low up to highest energies
- super-heavy elements
- hot dense nuclear matter

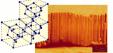
Atomic Physics

- atomic reactions
- precise spectroscopy of high charged ions

Biophysics and Nuclear Medicine

- radio-biological effectiveness of ions
- cancer therapy with ion beams

Plasma Physics


- hot dense plasma
- ion plasma interaction

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Material Science

- interaction of ions with solids
- structuring of materials with heavy ion beams

Accelerator Technology

- ion sources
- linear accelerators
- synchrotrons and storage rings

by GSI Division of Public Relations

 \hookrightarrow Appendix

W. Bayer (GSI)

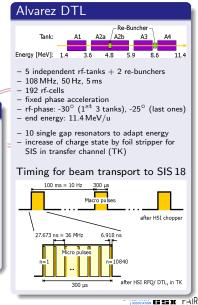
Tool for Synchrotron Injection Diagnostics

13. Apr. 10 6 / 7

🖉 helmholtz 📭 📻 🏦 🛛 FÁIŘ

EL SQA

UNIversal Linear ACcelerator UNILAC


Injectors

High Current Injector (HSI)

- high current ion source (MUCIS/MEVVA), 5 Hz & 1 ms
- Penning ion source (PIG), 50 Hz & 5 ms
- injection energy: 2.2 keV/u
- acceleration/ bunching by 1 RFQ & 2 IH structures
- end energy: 1.4 MeV/u
- rf operation at 36 MHz
- increase of charge state by gas stripper

High Charge Injector (HLI)

- ECR ion source, $5\,\text{Hz}$ & $1\,\text{ms}$
- injection energy: $2.2\,\text{keV}/\text{u}$
- acceleration/ bunching by 1 RFQ & 1 IH structure
- rf operation at 108 MHz
- end energy: 1.4 MeV/u

 \hookrightarrow Appendix

三日 のへの