

Operational Results and Experience of KSTAR Integrated Control System

2009

Mikyung Park KSTAR Research Center

Korea Superconducting Tokamak Advanced Research

2003

- Introduction of KSTAR Project
- Implementation of KSTAR Control System
- Operational Result and Issues
- Summary

KSTAR Project

KSTAR Project ?

◆ KSTAR - Korea Superconducting Tokamak Advanced Research

Missions -

Development of a steady-state-capable advanced superconducting tokamak to establish the scientific and technological base for an attractive

fusion reactor as a future energy source.

History-

1995 : Project launched

1998 : Construction started

2007 : Completion of Assembly

2008 : Achievement of the 1st plasma

Major radius, <i>R₀</i> / Minor radius, <i>a</i>	1.8 m _/ 0.5 m
Elongation, κ / Triangularity, δ	2.0/0.8
Plasma volume	17.8 m ³
Plasma surface area / cross section	56 m ² / 1.6 m ²
Plasma shape	DN, SN
Plasma current, <i>I_P</i>	2.0 MA
Toroidal field, <i>B</i> ₀	3.5 T
Pulse length	300 s
β _N	~5.0
Plasma fuel	H, D-D
Superconductor	Nb₃Sn, NbTi
Auxiliary heating /CD	~ 28 MW
Cryogenic	9 kW @4.5K

(STAR

- Fusion has the potential of providing an essentially inexhaustible source of energy for the future.
- Via nuclear fusion, the low atomic number elements react to convert mass to energy.
- Principal Fusion Reaction
 - 1) $D + D = {}^{3}He + n + 3.2MeV$
 - 2) D + D = T + p + 4MeV
 - 3) $D + T = {}^{4}He + n + 17.6MeV$
 - 4) $D + {}^{3}He = {}^{4}He + p + 18.3MeV$
 - D can be obtained from sea-water and T from ⁷Li and ⁶Li (quite abundant in nature).
 - ³He can be found on the moon.
 - D, Li and ⁴He are stable nuclei.

"The fusion of 1g of T(together with 2/3g of D) produces 1.6x10⁵kW-hr of thermal energy."

Tokamak & Ancillary Systems

KSTAR Tokamak

Cooling Water

Diagnostics Room

6

K§TAR

Heating Devices

Cryogenic Refrigerator

Magnet Power Supply

Long-term Plan of KSTAR

KSTAR Control System

Missions

국가핵융합연구소

- Integrating all Plant System I&Cs for Tokamak Operation
- Establishing the environment for Real-time F/B Control on plasma
- Implementing Machine Interlock & Protection
- Achievement of Synchronized Operation
- Development of Schema for Sequential operation
- Communication standard and software framework EPICS (Experimental Physics and Industrial Control System)
- Using every possible Open-source Tools for development
- Integration of Heterogeneous controllers : VME, VXI, cPCI, PXI, PCI, PLC, and cFP
- About 15,000 I/Os and 45,000 PVs (integrated in EPICS)
- About 800 experimental signal channels (managed by MDSplus)
- Using Five Different Optical Networks
- Adopting Two Databases : EPICS Channel Archiver, MDSplus
- Additional Databases for web_portal, signal DB and RDB (MSsql, Mysql)

The our control system is still growing and evolving !!

2 TierStructure2 Layer	2 Tier		 Control Interlock+Safety
		•Central Local	
Middleware	EPICS		
Operating	Linux		 Plant monitoring & control
system VxV	VxWorks		•Feedback control
H/W	Slow control		•PLC, cFP
Platform Fast control	Fast control		•VME, PXI, cPCI, PCI, VXI, (ATCA)
Interface (Networks) Interface <u>R</u> ea Inter Inter	<u>M</u> achine	EPICS CA	Plant monitoring & controlOperational data transfer
	Experimental Data	MDSip	 Shot-based data storing
	<u>R</u> eal-time	Shared-memory	•Real-time feedback control
	<u>I</u> nterlock	(ControlNet)	Machine interlock & protection
	<u>T</u> iming	Home-made protocol	•Timing & synchronized operation
OPI	Qt (open source)		•Home made
Data EPICS Channel Archiver Managements MDSplus	•Low rate continuous operational data		
		•High rate shot-based experimental data	

Control System Architecture

11)

The 7th International Workshop on Accelerator Operation, April 12-16 2010, Daejeon, KOREA

Plant Control System

12

K§TAR

Plasma Diagnostic DAQ System

- 50 types of Diagnostics / 21 diagnostics installed until 2009 (channels are increasing)
- MDSip / Experimental network : data stored to the MDSplus server/Central storage
- EPICS CA / Machine network : configuration, system status reporting, receiving of operation information
- Operated in synchronized manner using LTU (Local Timing Unit)

System	Channels(Final)	DAQ
Rogowski Coil	3	cPCI, max 200KHz
Flux/Voltage Loop	45	cPCI, max 200KHz
Magnetic Field Probe	244 (512)	cPCI, max 200KHz
Diamagnetic Loop	9	cPCI, max 200KHz
Saddle Loop	40	cPCI, max 200KHz
Vessel Current Monitor	3	cPCI, max 200KHz
Halo Current Monitor	15 (273)	cPCI, max 200KHz
Mirnov Coil	8 (72)	VXI, 1 ~ 10MHz
Fast Reciprocating Probe	5 (25)	cPCI, max 200KHz
Fixed Edge probe	6 (120)	cPCI, max 200KHz
MMW Interferometer	8	VME, max 200KHz
ECE Radiometer	40	VME, max 200KHz
Edge Reflectometer	4	PXI, max 200MHz
Resistive Bolometer	12	PXI, max 500KHz
X-ray Crystal Spectrometer	1	PCI, max 10KHz, Window
Visible Survey Spectrometer		PCI, max 100KHz, Window
Visible Filterscope		PCI, max 100KHz, Window
H_alpha Monitor	30	VME, max 200KHz
Soft X-ray Array	2	PXI, max 250KHz
Hard X-ray Array	80 (240)	PCI, 10MHz, Window
Visib Land Branch Latitute	3	PCI, Window

13

KSTAR

Machine Interlock

Structure

- 1 Supervisory Interlock (Fully redundant system)
- 10 sub-interlock systems for 28 Local controllers
- About 300 I/O points (in the initial stage)
- Communication (ControlNet/duplicate)
 - Media: Optical Fiber/ coaxial
 - Method: star + daisy chain

Assistant or Redundant Interlock

- Plasma Current Fault protection
- Direct Quench signal for Magnet Power Supply
- SMS (Short Message Service)

Four Interlock levels

- Level 1 : Fast discharge of TF current
- Level 2 : Slow discharge of TF current
- Level 3 : Experiment stop
 - fast discharge of PF current

14

KSTAR

- Level 4 : Next shot inhibit
- Warning

Radiation Monitoring System

Groups	Measurements	Detectors
Room		
ARM2	Gamma	Ionization Chamber
	neutron	He-3
ARM1	Gamma	Ionization Chamber
ARM3	Gamma	Ionization Chamber
ARM4	Gamma	Silicon
	neutron	He-3
ARM5	Gamma	Silicon
	neutron	He-3
STA1 (exhaust)	Particle(α,β)	Ionization Chamber
	Gas(α,β)	Double Silicon
STA2 (exhaust)	Particle(α,β)	Ionization Chamber
	Gas(α,β)	Double Silicon
Environmental		
ERM1 (200m)	Gamma	Silicon
	neutron	He-3
ERM2 (100m)	Gamma	Silicon
	neutron	He-3
ERM3 (300m)	Gamma	Silicon
	neutron	He-3

16)

KSTAR

Infrastructure

Main Control Room

- Operator's area : 24 operator's seats, Display wall containing 12 DLP cubes, 5 aux. displays E-stop buttons, access key-box, portable H.323, web-cam for web service, audio, ...
- Equipment room : mainframes of OPI servers, CCS, Central timing, SIS, PSI, RMS, a node of PCS, ...
- Meeting room : H.323, audio, project, etc....
- Plan : enlargement of MCR, construction of remote OP room for KSTAR and ITER

Storage system

- Main storage : IBM DS 8100, 14TB
- Disc Backup Storage : EMC, 6.5TB, temporary backup
- Tape Backup Library : IBM TS3500, 110TB, permanent backup
- Shared file system : GPFS v.3.2.1 (IBM)
- Network : 2 backbones, 11 workgroup SW, multi-mode fiber-optic, star-topology
- Servers : Gateway, Data archiving, Data analysis, Computing, Relational DB, Web_portal, Standby, etc

Data Visualization

KSTAR - Korea

4:48 PM

Shot Info

Sect shot: 2227

Bookmarks

• Logbook / X

🕸 🛞 - 🌈 20000

KITA POST

2215

2215

2215

2214

2214

result = startup we that the coils read right direction

Experiments Information Services KSTAR

Operational Results and Issues

21

• 6 Long-term Operation Stages

Vacuum pumping – Cool down – Magnet test – Plasma Experiment

– Warm up – Maintenance

Daily Operation

Search – Readiness check – TF on – Reference shot – Plasma shot – TF Off

Experiment(Shot) Sequence

Operation of the 2nd Campaign in 2009

Operation Period : 08/10 2009 ~ 12/28 2009 [~ 5 months]

23

KSTAR

- Plant Control and Diagnostic DAQ systems
 - 2008 : 27 systems with 17911 Processing Variables (PVs)
 - 2009 : 37 systems with 45375 PVs
- Total Experimental Shots including vacuum shot and plasma shot
 - 2008 : 1 1283 shot (1283 shots)
 - 2009 : 1284 2342 shot (1059 shots)
- Plasma Experimental Data (MDSplus data)
 - 2008 : 211.904GB
 - 2009 : 479GB (due to the expansion of diagnostic channels)
- Plant Operational Data (EPICS data)
 - 2008 : 1143GB /8365 PVs (13 Archive engines)
 - 2009 : 389GB /4886 PVs (11 Archive engines)(optimization in # of signals & archiving rate)

Experimental Results

Operational Results in 2009

Analysis of Faults

Causes	Occurrence	Consequences
Operator's errors	46	Stop the plasma shots
Plant Control Faults	18	Fain in operation monitoring Fail in synchronized operation
Servers Faults	7	Fail in data monitoring & archiving
Diagnostic DAQ Faults	5	Fail in Data acquisition

Diagnostic DAQ Fault (7%)

Plant Control Fault (24%)

- CCS RT violation fault
- CLS_HCS communication error
- TMS IOC down
- Fuel_DAQ fault
- ECH sequence error
- ECH synchronization fail

Servers Fault (9%)

- CA gateway down
- MDSplus server down

25

KSTAR

Archiver server down

• Results

- 1. Upgrades and modifications conducted to enhance the performance and stabilities by solving the problems occurred during the 1st operation
- 2. NOT serious faults to effect on the plasma experiments
- 3. Major faults caused by operator's errors in violating the operational sequences and making mistakes in system configurations

NFR 국가핵융합연구소 National Fusion Research Institute

27

documentation, the robustness & automation must be achieved in the control systems.

- Expanding the control system to cope with newly installed plant & diagnostic systems
- Enhancing stability and availability of control system
 - : Non-interrupt Operation of KSTAR
 - Redundancy : Hardware, EPICS IOC, Applications
 - Self-Protection logics implemented into each control system against unintended actions such as sequence violation, operator's errors, etc
 - Document the procedures for operation practically and intimately
- Improving the management of control systems
 - Update the guideline for control system development
 - Improve the environment for run-time monitoring & configuration of control system
- Establishing the environment for remote participating in KSTAR experiments and operations outside KSTAR
 - Enhance the security of access to KSTAR
 - Development a tool for remote operation
 - Setting to R&D work for longer pulse operation in the future

Thank you for your Attention !

On the date of the first plasma target achievement (Jun. 13, 2008)