Fermilab

Operator Training

The First Six Months

Fermilab is managed by the Fermi Research Alliance under contract for the Unites States Department of Energy.

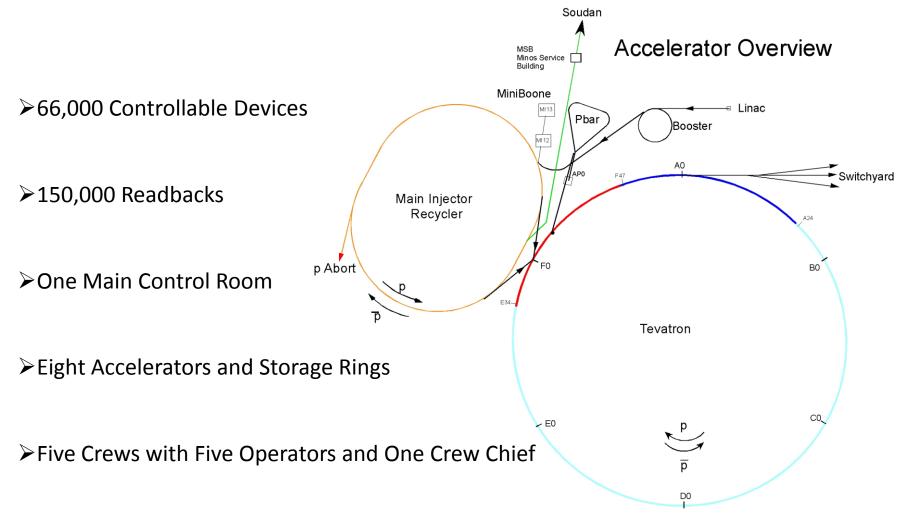
New Operators

• Where Do They Come From?

 $\circ~$ Colleges and Universities

- Where Do They Go?
 - $\circ~$ Back into a Different Group at Fermilab
 - \circ To a Different Laboratory
 - Back to School
 - To a Different Job

What Do We Look For?


- Diversity of Interests and Activities
- Curiosity
- Accomplishments
- Practical Experience
- Communication Skills
- Motivation
- Social Interaction

Yes, But Who Is Putting Back Together?

Fermi National Laboratory Statistics

➢Operators Respond to Problems. There are No Technicians on Shift.

Fermilab Safety Training

Environmental Management System General Employee Radiation Training Hazard Communication Introduction to Quality Assurance Job Hazard Analysis PPE (Personnel Protective Equipment) Sexual Harassment Training for FNAL **Employees** Traffic Safety Awareness **Back Works Training Basic Computer Security CDF** Supervised Access CPR Compressed Gas Cylinder Safety **Computer Workstation Ergonomics Confined Spaces** Cryogenic Safety (General) **DO Hazard Awareness**

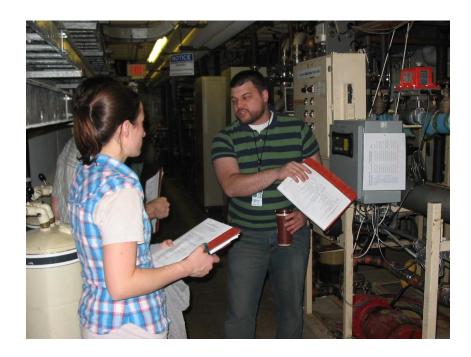
Electrical Safety Orientation Electrical Safety (NFPA 70E) Fall Protection Orientation Fermilab Controlled Access Fire Extinguisher Use Hearing Conservation Lockout/Tagout Level 2 Material Move Survey MuCool Test Area Hazard Awareness NuMI/MINOS Underground Safety Training O.D.H Training **Oil Handling - Oil Pollution Prevention** Program **Pressure Safety Orientation** Protecting Personal Information at Fermilab Radioactive Source Training (CR) Radiological Worker (CR) Scissors Lift Safety Training for CDF

The On the Job Training Method

- Operators Gain
 Experience on All
 Accelerators
- Theory & Terminology
- All Operators Receive Same Training
- No Expert Secrets
- OJT Provides Proof of Training

The On the Job Training Method

- Overview of Accelerators
- Many Experienced Trainers
- Checkpoints with Signoffs
- Self Directed
- Can't Learn Accelerator
 Operations from Book


Disadvantages of the OJT Training Method

- Must Hire Self
 Motivated People
- Reading Books Alone Won't Train Properly
- Operator Might Never Delve Deeper
- Amount of Information Seems Insurmountable
- Experts Want to Add More Complexity

Advantages of the OJT Training Method

- Experienced Operators Must Stay Up-To-Date
- Operators Help Refine Training
- Training Committee Reviews OJTs, Rookie Books, and Tests
- This is the Quickest Method of Training

Tools

CAMAC Card Replacement

I- Source Preaccelerator Dome Access

Swapping Out a CAMAC Card

Access I-Preacc Dome

The Concepts OJT

Personnel Introduction

Trainee	Date	Accelerator Division, Headquarters You have had the opportunity to be introduced to Accelerator Division Headquarters personnel, including: Roger Dixon (Division Head)		
		2. Proton Source Department		
Traince	Date	You have had the opportunity to be introduced to some Proton Source personnel, including:		
		Bill Pellico* (Department Head)		
		Booster Group		
		Todd Sullivan* (Group Leader)		
		Jim Lackey*		
		Kent Triplett*		
		Salah Chaurize*		
	Linac Group			
		Fernanda Garcia (Group Leader)		
		Larry Allen*		
		Ken Quinn		
		Ken Hartman*		
		Johnathan Walters		
		Trevor Butler		
		Pat Karns*		
		Preacc Group		
		Dan Bollinger (Group leader)		
		Ray Hren		
		Jim Wendt		

2.0 Personnel Introduction

- 1. Operations Department
- 2. Proton Source Department
- 3. Tevatron Department
- 4. Main Injector
- 5. Antiproton Department
- 6. External Beamlines
- 7. Controls Department
- 8. Cryogenic Department
- 9. E/E Support Department
- 10. Mechanical Support Department
- 11. RF & Instrumentation Department
- 12. ES&H Department

Main Control Room OJT

3.1 Administrative In-processing

Trainer	Date	1. Sign-off Verification The Introduction to OJT has been read and any unclear areas have been discussed with your mentor. When you understand what is expected of you and the training process, have your trainer sign off.
Trainee	Date	 Workbench Assigned A workbench has been assigned to you.
Trainee	Date	3. Safety Shoes Your trainer will show you what form to fill out and explain the safety shoe procedure. Sign yourself off when you have safety shoes.
Traince	Date	4. Mailbox Assigned You have been assigned a mailbox.
Duty Assistant	Date	 Department Training Database Your name has been added to the department training database.
Duty Assistant	Date	 Safety Training Database Your name has been added to the safety department training database.
Duty Assistant	Date	7. Permanent Film Badge The form requesting your permanent film badge has been completed. Use a visitor's film badge from the COM center until you receive the permanent badge.

1			8. Personal Dosimeter
			You have received a personal dosimeter.
	Duty Assistant	Date	

Main Control Room OJT

- 3.1 Administrative In-processing
- 3.2 Lab & Division Required Training
- 3.3 Operator Task Training
- 3.4 Operator Procedure Training

Introductory Training Part 4.0: Walkarounds OJT

		7
		1. MCR Console
Trainee	Date	Understand how to use a Console. Your knowledge should include:
		1. Know what the Index pages are.
		 Know what the index pages are. Know what the utility window is.
		 Know what the durity window is. Know how to start programs.
		 Know how to start programs. Know how to start Fast Time plots and Snapshot
		plots and know when you would use each.
		5. Have a general understanding how the alarm screen
		works and under what conditions alarms are cleared.
		 Know how to access IMAP servers to check your
		laboratory e-mail.
		Know how to access the machine electronic
		logbooks.
		8. Know how to access the MCR electronic logbook.
		You knowledge should include:
		 a) How to complete the shift roster.
		 b) How to make logbook entries, including
		inserting graphics.
		 c) What information should be logged or not
		logged.
		7
		2. Common Console Tasks
Trainer	Date	You have been introduced to the following ACNET programs to
		complete common tasks. Your knowledge should include:
		 Know the basic functions of the parameter page.
		This includes knowledge of parameter names, text
		descriptions, analog and digital control and
		readback, analog alarm limits, bypassing analog
		alarms, and timer references.
		 Add your name to Phone Directory program (D17)
		Also, know how to search for names.
		3. Understand the procedure for logging downtime
		entries on D18.
		4 Understand the use of the TV Guide program D100

and be able to find various channels of interest

Accelerator Concepts OJT

1. Accelerator Terminology

period times the RF frequency.

	1. Accelerator Terminology					
Trainer	Date Know common accelerator terminology associated with					
	accelerators and beam lines.					
	Bucket is the stable phase space area created by the RF where beam may					
	exist.					
	A Bunch is the beam within a bucket, a tiny cloud of particles.					
	Coalesced Bunch is one bunch of beam that was created from several					
	bunches of beam through RF manipulation.					
	ouncies of ocum unough its initial publication					
	Batch is a unit corresponding to the maximum output of one Booster					
	cycle, which is equivalent to 84 53 Mhz bunches. In practice we send less					
	than 84 bunches per batch due to notching the beam in Booster to create a					
	gap for the extraction kickers.					
	gap for the extraction kickets.					
	Multi-batching is the process of sending more than one successive					
	Booster batch to the MI for acceleration.					
	booster baten to the Mi for acceleration.					
	Partial-batching is the process of sending less than 84 bunches to the MI					
	per booster cycle and sending the remainder to the Booster dump. This					
	method is regularly used for sending beam to SY120.					
	Turn One turn is one circumference of Booster beam at injection. N turns					
	are N circumferences of Booster beam at injection. The more turns, the					
	more beam per bunch.					
	Harmonia Number (b) is the number of stable PE buckets in a machine					
	Harmonic Number (h) is the number of stable RF buckets in a machine,					
	or the maximum number of bunches an accelerator can hold at a particular					
	RF frequency. It can be calculated by multiplying the beam revolution					

Accelerator Concepts

- 1. Accelerator Terminology
- 2. Magnets
- 3. Injection/Extraction
- 4. RF Terminology
- 5. Basic RF Systems
- 6. Transition
- 7. FNAL Accelerators
- 8. Machines
- 9. LINAC for HEP (H- ions)
- 10. LINAC for NTF (H-ions)
- 11. Booster
- 12. Main Injector

- 13. Main Injector for Collider
- 14. Main Injector for Pbar
- 15. Tevatron
- 16. Tevatron Collider
- 17. Antiproton Source
- 18. Recycler
- 19. Water, Power, Vacuum, & Cryogenics
- 20. Beam Intensity Monitoring
- 21. Bump Theory
- 22. Critical devices