WAO10 April 12 – 16, 2010 INTEC, KAERI, Korea

Current Status and Future Prospect of the PEFP Control Room

Young-Gi Song (ygsong@kaeri.re.kr) PEFP, KAERI

- I. Introduction
- II. Control System
- **III.** Control Room
- **IV. Summary**

Distributed Control of the PEFP accelerator

- Network based Distributed Control System
- Integration of Subsystem Controllers
- * EPICS Software Architecture

SYSTEMs

Centralized Control of the PEFP accelerator

- ***** Control Room for the 20 MeV Proton Linac
- Control Room
 - Allowing Operators to Control Devices
 - Allowing Operators to Monitor Operation Parameters
- * To give More Environmental Condition to Operators
- ***** To design Main Control Room for the 100 MeV Proton Linac

I. Introduction

II. Control System

III. Control Room

IV. Summary

Control Infrastructure

- * Red Hat Enterprise Linux (RHEL): Rack Mounted Server
 - Servers to support remote access (IBM, HP)
 - Servers to support network services and network management
 - EPICS file/boot servers
 - Application servers
- Application Installation: RHEL Servers
 - EPICS Base and Extensions, SUN java/jvm, SQL DB
 - ECLIPSE as an IDE for java/C++/C development
- Target IOC hardware, OS selection, IDE configuration
 - VME-SBC PowerPC architecture
 - MVME5110 is used for more demanding applications
 - VxWorks 5.5.1 is a production target OS
 - Development environment
 - To build a cross-compiler environment using Tornado and vxWorks in SunOS

Vacuum

Ethernet/IP

ControlNet Interface

Ethernet Interface

Turbo

Pumps

Magnet Power Supply

- Remote Control and Monitoring
- Protection of DT electroquadrupole magnet
- Operator Interface
- Controller
 - MVME5110 VME-SBC (PowerPC7410)
 - VME Serial Board
 - VxWorks 5.5.1
 - EPICS 3.14.9
 - Modbus/RTU protocol
- Functions
 - Monitoring: voltage, current, status(on/off, local/remote, normal/alarm)
 - Control : on/off, current setting permissible setting range
- EPICS sequencer module
 - To protect Draft Tubes (DT) from cooling trip and unstable current
- ✤ 100 MeV Magnet Power Supply
 - Need Discussion and Decision

Input Output Controller (EPICS IOC)

Modbus/RTU PROTOCOL

Power Supply Controllers

Low-level RF (LLRF)

- RF amplitude and phase requirements of the accelerating field are within ±1% and ± 1°
- RF digital feedback control system was developed and operated
- Digital RF feedback control system
 - MVME5110 VME-SBC (PowerPC7410)
 - ICS-572B FPGA board,
 - VxWorks 5.5.1
 - C programming with BSP, Text terminal
- LLRF control system configured to improve RF field control of the 100 MeV accelerator
 - Pentek 7142 FPGA PMC module
 - EPICS 3.14.9
- Fill the Requirements

	RF Control Frequency
RF	350 MHz
LO	300 MHz
IF	50 MHz
Sampling clock	40 MHz

- ADC : 125MHz max. sampling rate : 4 ch., 14bit resolution
 DAC : 320MHz max. converting rate : 1 ch., 16bit resolution : dc to 160MHz IF output
 FPGA : Xilinx Virtex4 XC4VSX55
 Memory : DDR2 SDRAM (64M×32)
 Clock : external (1 to 300MHz, 0 to +10dBm) : internal (125MHz max.)
 - Gate : internal or external

100 MeV

Resonance Control Cooling System (RCCS)

- Resonant frequency matched to the HPRF driving frequency
- RCCS IOC: temperature, flow rate, pressure, motor speed & control, valve status & control, alarm status screen, flow chart screen, AutoSave
- Resonance frequency error measured by LLRF system and fed in RCCS

Parts	Specification
Case/Slot	19", 6U USB Backplane Type
CPU	Intel Pentium, 500 MHz
Memory	512 MB
HDD	4 GB Compact Flash Memory
Ethernet	10/100/1000 Mbps
OS	Linux (Fedora Core 8 and over)
Kernel	RT Kernel 2.6.23.1
Software Tool	EPICS base, sequencer, AutoSave
Signal I/O modules	Analog Input Board Analog Output Board Digital Input Board Digital Output Board RTD board

Transmission of Frequency Error Signal through EPICS CA

RCCS OPI

Fabricated water pumping skip

RCCS IOC

LLRF IOC

LLRF Control System

RF and Beam Current Monitoring System

- * RF
 - SSA, cavity, forward, reverse
- Beam Current :
 - ACCT, TCT, FCT, BPM
- * NI LabVIEW 8.6 TCP/IP VISA resource
- EPICS software: Not Used
- Modification
 - NI LabVIEW Client I/O Server
- For Beam Monitoring System
 - MVME5110 VME-SBC (PowerPC)
 - VxWorks 5.5.1, EPICS 3.14.9
 - VME VTR812 ADC board
 - 8 channel, 12 bit resolution, 10MHz sampling rate
 - Common external triggering/clock
 - Oscilloscope Embedded IOC
 - PXI IOC

VTR812 Fast ADC Test Board

EPICS IOC

Timing System

- * Providing Accurate Trigger Signals for Synchronized Operation
 - RF gate generation
 - Beam gate generation
 - Low level RF control trigger
 - Klystron modulator control trigger
- Control System Synchronized and Operated with the Same Time Referenced to External Clock

Data Management

Data Storage Systems

- EPICS channel-archiver : IOC real-time database to store real-time data
 - H/W: rack-mounted server (Intel-based)
 - S/W: RHEL 4, EPICS 3.14.9
- SQL database to store a lot of information
 - Running on RHEL with Intel Xeon 2.4GHz and memory 2GB
- Web Report System

20 MeV Control System

Control Room

- Install IOCs for the 20 MeV proton linac
 - HVCM, HPRF, and so on
- Standard for the 100 MeV Control System
 - To optimize EPICS programs
 - To improve the stability and reliability

I. Introduction

II. Control System

III. Control Room

IV. Summary

20 MeV Control Room

Facility Building

- Size : 35 m × 35 m
- Accelerator components (ION, RFQ, DTL, beam line)
- HPRF (High Power RF)
- HVCM (HV Converter Modulator)
- Bragging room
- Clean room
- 1st floor :
 - Size : 5m × 7 m
 - Control room → Experiment preparation room
- 2nd floor :
 - Size : 9 m × 7 m
 - Office room \rightarrow Control room

Facility Building Layout

2007 ~ 2008

- No tables to hold keyboards and mice
- No ventilation system

Motivation for Change

* 1st Control Room : Motivation for Change

Minimum Requirements

- Enough room for operator, scientific and engineering staffs
- Console and seating
- Increase display monitors
- Ergonomic design
- Air ventilation system
- Dust trap
- Moving Plan
 - Size : 9 m × 7 m
 - UPS (Uninterruptable Power Supply)
 - Computer system
 - CCTV (Closed Circuit Television) camera and monitor
 - Cabling work

Since Feb 2009 ~

Improved Factors

- Air ventilation
- Control parameters
- Display monitors
- Expanded console and setting
- Installed CCTV camera
- UPS (Uninterruptible Power Supply)

2F Control Room

2F LLRF racks (Control Room)

100 MeV Control Room at Gyeongju site

- * MCR Located on the Ground Floor of the PEFP facility
- **MCR of a Restricted Area**
- Unauthorized Entry Prohibited
- Entry only by showing of access card

SECURI GUARD RM

ENTRANCE LOBBY

ENTRANCE CONTROL

> BL => BEAM LINE PR => PROCESSING ROOM LAB => LABORATORY

Basic Layout

- Size: 20 m × 8.6 m
 - Main control room : 9.5 m × 8.6 m, machine room : 11 m × 8.6 m
- Main Points
 - Access floor, Electric work, Computer equipments, Air conditioning
- * Major Considerations
 - Constant temperature and humidity
 - Power cable, Signal cable, Network cable using duct of access-floor

- **Design Factors :**
 - Human traffic, Lighting effects, Temperature and humidity, Console layout
- * Air conditioning
 - Temperature: 21 ~ 24°C
- * Access Floor: Double Floor
- ✤ Display
 - OPI: 22" LCD 18 ea.
 - CCTV: 26" LCD 3 ea.
 - Display Wall : 26" LCD 4 ea.
 - LED : Safety Status
- Console Table
 - U-shaped array
 - House console and seating
 - Operator
 - PPS & RMS
 - Crew chief
- Console Layout
 - Decision of a console target
 - Accessibility among console targets
 - Classify the order of priority

Computer Equipment Room

- Maintenance Consideration
- Constant Temperature and Humidity
 - 23°C ±2°C, 45 ~ 50% (a standard of machine room)
 - Down-flow type supplying air under access floor
- Automatic Fire Equipment
- Redundant UPS
- * Access Floor : Double Floor
- Server: 10 ea.
 - OPI, Storage, Web, IOC
- Network System
 - Backbone
 - Workgroup switch
- ✤ 5 Racks: Computer Equipments

Main Control Room of the PEFP 100 MeV Accelerator

- U-shaped array
- Console and Seating
 - Operator
 - PPS & RMS
 - Crew chief
- Access Floor · Double Floor

- I. Introduction
- II. Control System
- **III. Control Room**
- **IV. Summary**

- Network Distributed Control System using EPICS
- Integration Control Parameters using EPICS CA Protocol
- Cost-effective and high reliability
- ***** Keep Optimization of EPICS IOC for the stability and reliability
- Main Control Room
 - Define target for control room design
 - Measure : use questionnaire to acquire operation information
 - Survey existing control system
 - Prepare draft design