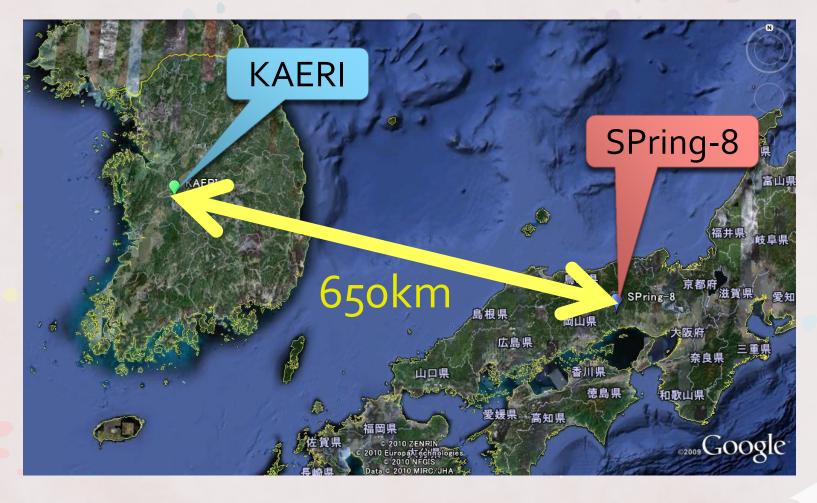
Reassignment of network addresses at SPring-8 control system

<u>T. Sugimoto</u>, M. Ishii, T. Ohata, T. Sakamoto, and R. Tanaka Japan Synchrotron Radiation Research Institute / SPring-8

The 7th International Workshop on Accelerator Operations KAERI, Daejeon, KOREA, April 12-16, 2010



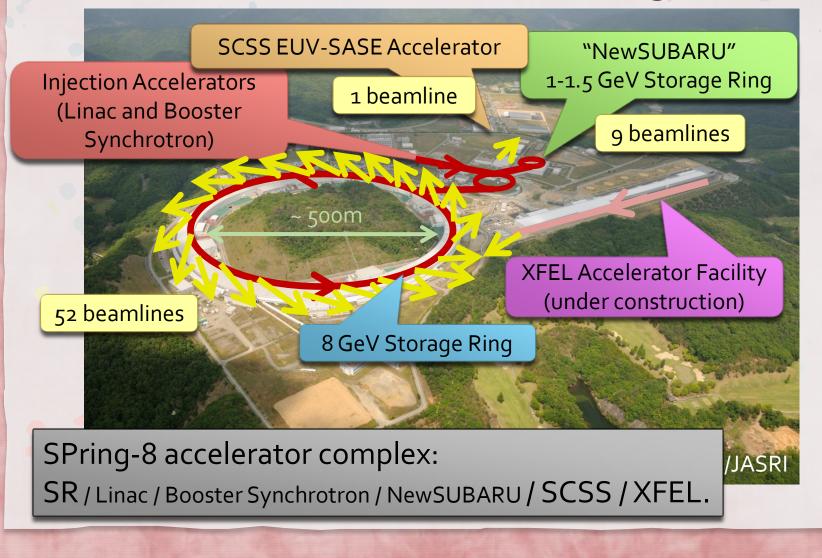
Outline


- IntroductionMotivation
- Procedure
- Results and Summary

INTRODUCTION

Location: Korea and Japan

650km far from the KAERI


Bird's-eye view of the SPring-8 site

(c) RIKEN/JASRI

SPring-8 is the largest synchrotron radiation facility in the world. Total site area is about 1.4x10⁶ m²

Bird's-eye view of the SPring-8 site

Why we need to reassgin network addresses

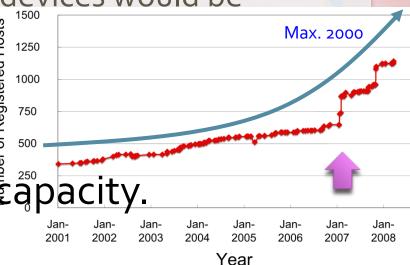
MOTIVATION

First days of SPring-8 control system

Original design of the network architecture based on,

- <u>TCP/IP</u> technology established as standard protocol/architecture.
- Layer 2 topology without any router
 - Throughput and availability of routers were low at that time.
 - Only 350 network devices were installed, then L2 was very simple and easy to use.
- We took advantage of Ethernet as a distributed control field bus.
 - Fast packet forwarding with Ethernet switches
 - Scalability using cascaded connection

 SPring-8 control system, 10 years later (~2008)
 Control system became complicated.
 The number of network devices increased.
 More than 1200 devices were connected in single broadcast domain. (network segment)


A lot of problems arose due to the network architecture.

Two examples are shown in next slides:

Problems on SPring-8 control system (1)

- IP address exhaustion
 - We used the subnet mask of 21 bit.
 - Address capacity is 2000.
 - ~100 devices were newly installed every year:
 - Virtuallization (Virtual machines)
 - Increase of network-connected devices
 - After few years, no more devices would be installed.
 - It is difficult to integrate a control system.

→We must expand address

Problems on SPring-8 control system (2)

- Broadcast domain was too large.
 - Broadcast traffic was typ. 30 packet/sec.
 - In the burst case, broadcast traffic was raised to > 100 packet/sec.
- Broadcast packets are found to be harmful for certain network-connected embedded devices.
 - less processing capability, buffer overflow
 - Motor control unit[1]
 - Digital multimeter

We must shrink broadcast domain.

[1] T. Sugimoto et. al: Proceedings of PCaPAC 2008, THX03 (2008)

- We must expand address capacity. Most simple solution which keeps L2 topology is enlargement of broadcast domain, but ...
 We must chrink broadcast domain
- 2. We must shrink broadcast domain.

 \rightarrow Two requirements are conflicted.

Problems are caused by L2 topology!

Make a plan to change the network architecture of SPring-8 control system.

Plan to change architecture

	Previous Architecture	Now Architecture
Logical Topology	Layer 2 (No router)	Layer 3 (Using L3 switch)
Address Capacity	~2000	~65000 (for each accelerator complex)
Broadcast domain (Subnet mask)	~ 2000. (21 bit mask)	~ 500 (23 bit mask)
IP Address (Class-B private)	172.24.8-15.z	172.X.y.z x=20 for SP8 x=16 for XFEL, and so on.
VLAN ID	1	100X + Y
Name Resolution	NIS	DNS
Domain	(none)	4 (sp8.cntl.local, xfel.cntl.local, etc.)

Details: T. Sugimoto et. al: Proceedings of ICALEPCS2009, WED006 (2009)

Network segment: Router v.s. L3 switch

Segmented network needs IP forwarding (L3) network instruments.

Router

- Historically used
- Low throughput
 - Software based
- Multifunction

- Available in end of 1990s
- High throughput

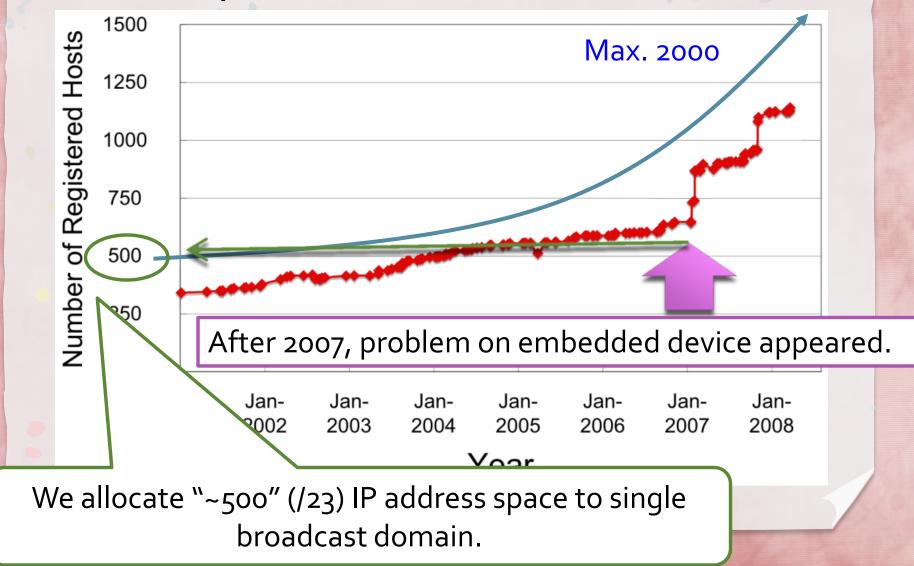
L₃ Switch

- Hardware based
- Limited function

We don't need most part of functions!

- High reliability
- Availavility: intermediate
 - 10 sec failover by VRRP

- High reliability
- High availavility
 - < 1 sec failover by stacking</p>


Cisco Catalyst 6504E VSS: to be installed in 2010

Plan to change architecture

	Previous Architecture	New Architecture
Logical Topology	Layer 2 (No router)	Layer 3 (Using L3 switch)
Address Capacity	~2000	~65000 (for each accelerator complex)
Broadcast domain (Subnet mask)	~ 2000. (21 bit mask)	~ 500 (23 bit mask)
IP Address (Class-B private)	172.24.8-15.z	172.x.y.z x=20 for SP8 x=16 for XFEL, and so on.
VLAN ID	1	100X + Y
Name Resolution	NIS	DNS
Domain	(none)	4 (sp8.cntl.local, xfel.cntl.local, etc.)

Details: T. Sugimoto et. al: Proceedings of ICALEPCS2009, WED006 (2009)

Why we choose 23 bit mask.

Plan to change architecture

	Previous Architecture	New Architecture		
Logical Topology	Layer 2 (No router)	Layer 3 (Using L3 switch)		
Address Capacity	~2000	~65000 (for each accelerator complex)		
Broadcast domain (Subnet mask)	~ 2000. (21 bit mask)	~ 500 (23 bit mask)		
IP Address (Class-B private)	172.24.8-15.z	172.X.y.z x=20 for SP8 x=16 for XFEL, and so on.		
VLAN ID	1	100×+y		
Name Resolution	NIS	DNS		
Domain	(none)	4 (sp8.cntl.local, xfel.cntl.local, etc.)		
To accomplish changing architecture,				
it is necessary to reassign IP addresses.				
Details: T. Sugimoto et. al: Proceedings of ICALEPCS2009, WED006 (2009				

New Network Architecture Archive stable network operation Reduce broadcast domain, because we must guard devices, which are vulnerable to heavy traffic. We changed single Storage Ring Network is segme C-zone D-zone Booster of devices. Synchrotoron A-zone B-zone • We can append ne NewSUBARU Linac **Control Room**

How to change network architecture

PROCEDURE

Procedure

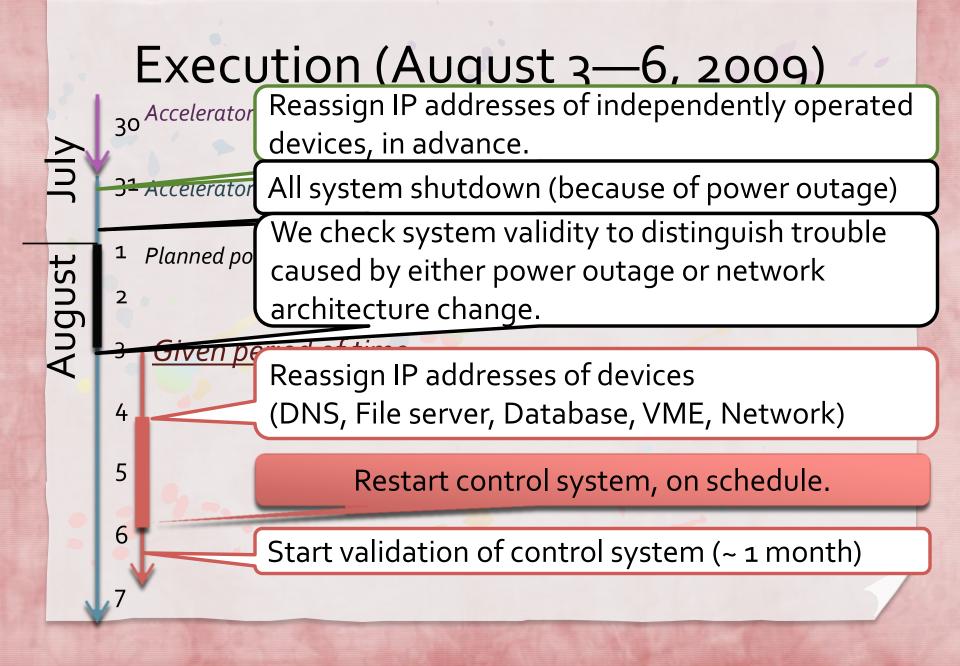
Boundary condition

- Address reassignment must be finished by the end of summer shutdown period (~ 1 month).
- New network configuration must work no later than 2 days after the end of the scheduled period.

Estimated project period

- Test and exercise: 1 month
- Setup and reconfiguration: 4 days
- Validation: 1 month

Should be done by control division staff.
We cooperated with > 10 persons.


Test and exercise (July, 2009)

- Test first, and exercise address reassignment procedure.
 - We built a test bench simulating the actual control system.
 - We held rehearsal 4 times:
 - Examine shell scripts, which change IP addresses of > 100 devices at a time.
 - Find out and fix problems.
 - Estimate required time.

Feedback from exercise

- From the exercise experience, we refined work procedure as follows:
 - 1. Name resolution
 - 2. File server
 - 3. Database
 - 4. VMEs
 - 5. Network
 - 6. Other instruments

Estimated required time was <u>2 days</u>. Confirmation and confidence to achieve successful reassignment – then do it.

Validation (August 7 – 31, 2009)

- Almost all control devices were OK.
- A few problems remain
 - We could not configure default gateway of VERY OLD devices.
 - Multi-channel analyzer purchased in 1990s
 - L2-based maintenance terminal did not work.
 - →To resolve such problems, we configure port-based VLANs for these devices.

SPring-8 control system was ready to run at the end of August.

RESULTS AND SUMMARY

Results

- Network architecture of SPring-8 control system is completely changed from L2 to L3 topology.
- We measure address exhaution.
 - IP address capacity is upgraded from 2,000 to 65,000.
- We also resolve broadcast domain problem.
 - Broadcast traffic is reduced from 30 pps to < 1 pps, and no burst has been observed.
 - Now, motor control unit is operated with no trouble.

Summary

- Network architecture of SPring-8 is changed to L3.
 - Motivation: resolve problems caused by L2 topology
 - IP address exhaution
 - Too large broadcast domain
- Man power
 - It took < 4 days with > 10 persons. (~ 50 man-days)
 - We changed > 1000 devices distributed in large SPring-8 site.
 - Shell scripts are useful to change many devices at a time.
- Other benefit
 - Asset management
 - We assigned responsible person to each device, which was not assgined to.
 - We removed ~ 200 devices, which were not used any longer.

And now, SPring-8 is in operation very stable.

Thank you for your attention!

さくら-Cherry blossoms near the SPring-8, April 2010