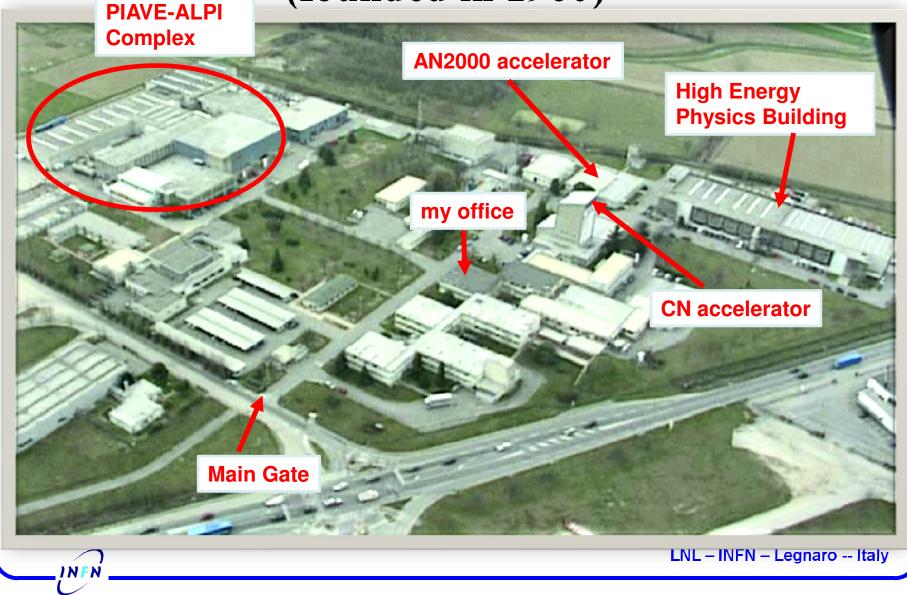
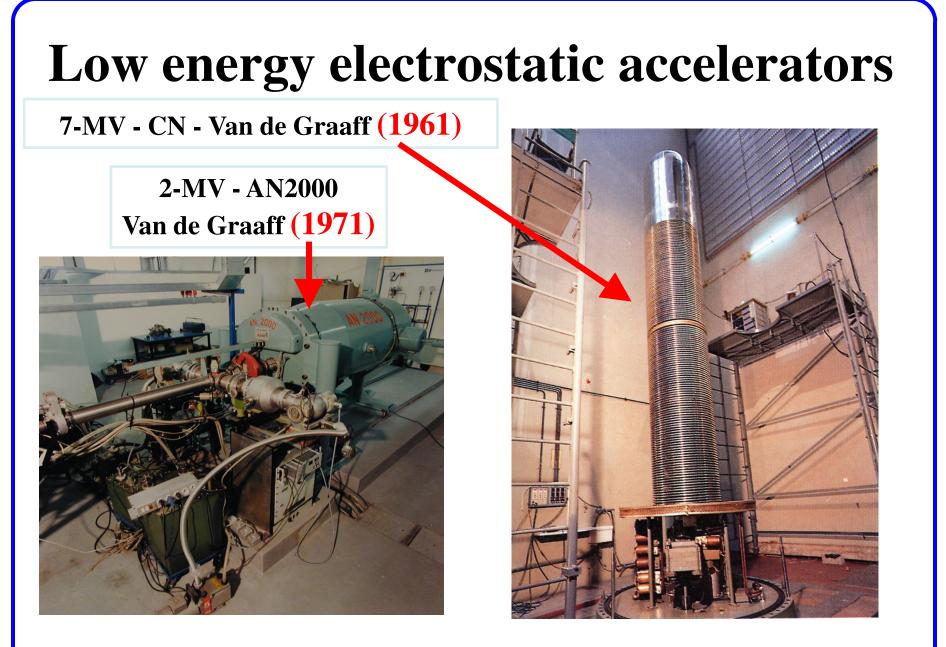
Maintenance activities at Laboratori Nazionali di Legnaro

Davide CARLUCCI Tandem-Piave-Alpi Operation Supervisor

LNL - INFN Viale dell'Universita' 2, 35020 Legnaro (PD) - Italy <u>carlucci@lnl.infn.it</u>

LNL - INFN - Identity Card

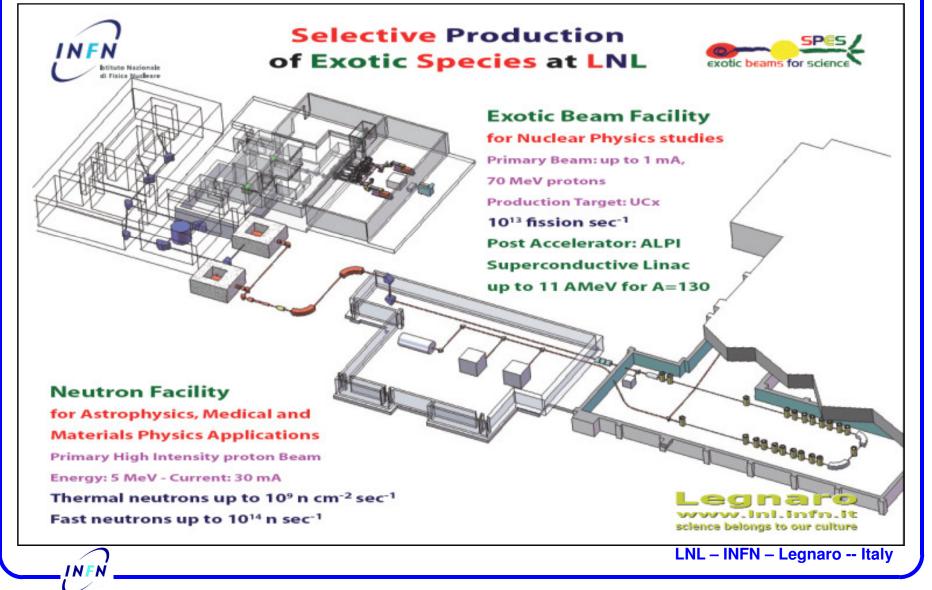

MULTI TASK MULTI DISCIPLINARY But mainly Nuclear Physics Based User Oriented Laboratories



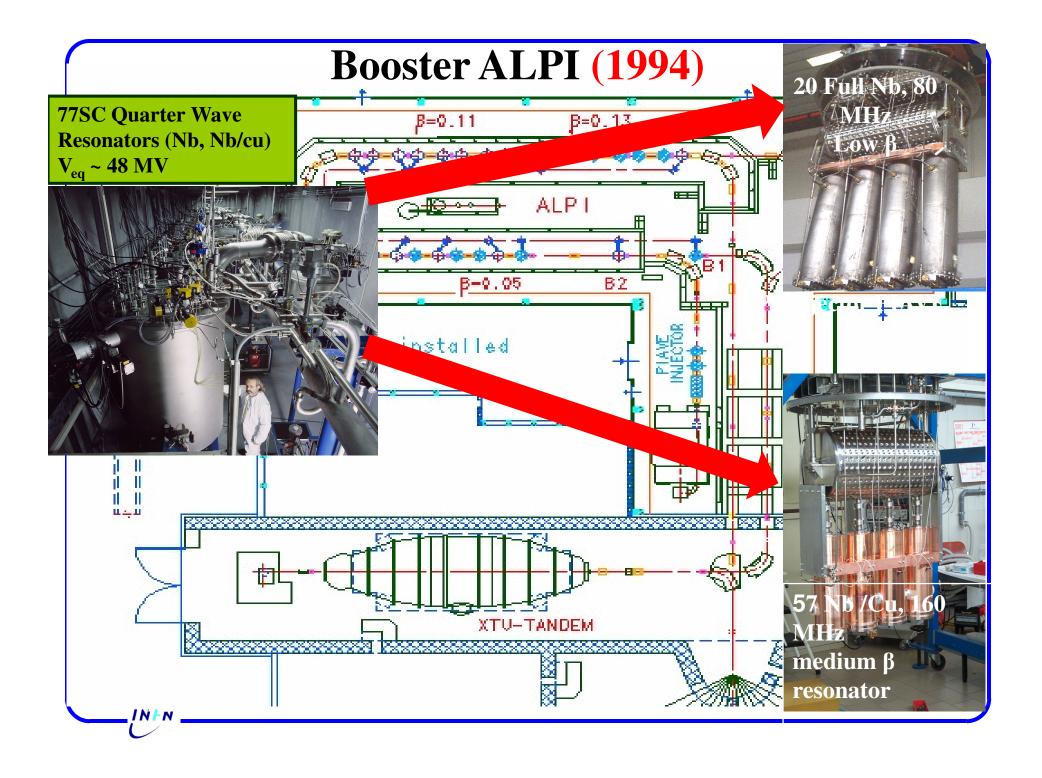
CORE RESEARCH ACTIVITIES

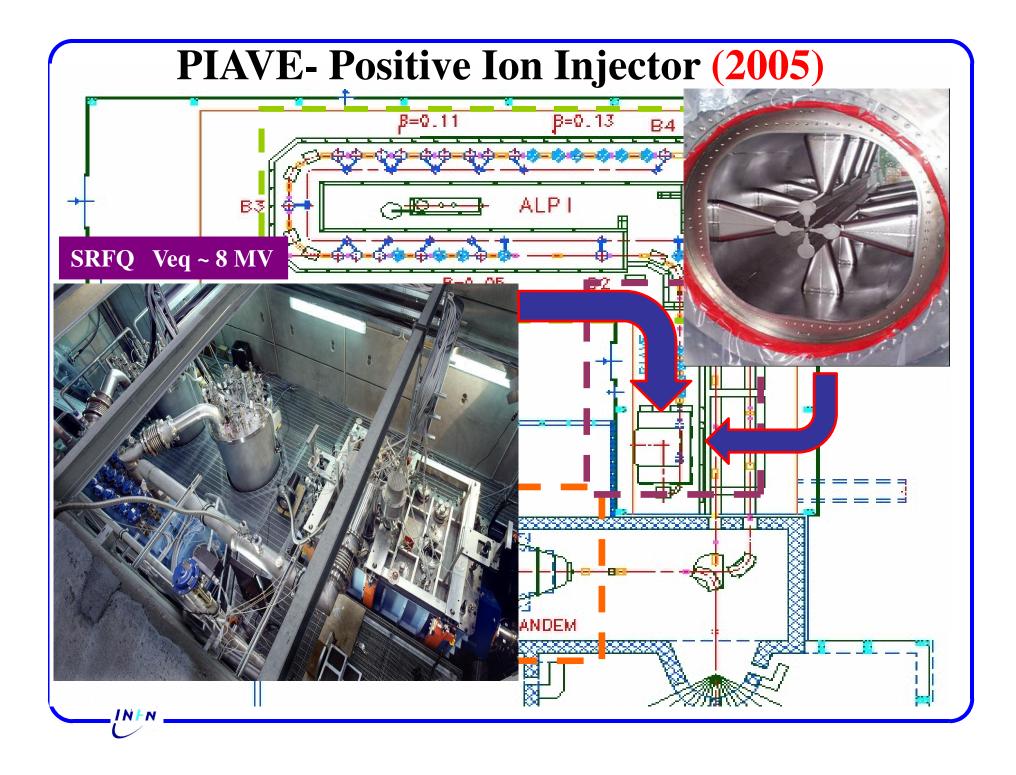
- 1. Nuclear Structure and Dynamics
- 2. Applications and Interdisciplinary use of ion beams and nuclear techniques and methods

Laboratori Nazionali di LegnaroTandem-
(founded in 1960)



LNL –PIAVE-Tandem-ALPI- COMPLEX


Further PIAVE-ALPI upgrade included in the SPES project framework (2016)



Tandem-Accelerator (1981)

DDB, 5 Mhz, 10Mhz

- Negative ion source
- 14 MV terminal voltage
- SF6 insulating gas at 7 bars
- Single o double stripping stages

TABLE OF T	ANDEM-ALP	I REPRESENTA	TIVE BEAMS
Beam	E [MeV]	E/A [MeV/A]	I target [pnA]
¹² <u>C</u> ⁵⁺	240	20.0	2
¹² <u>C</u> ⁶⁺	<u>276</u>	<u>23.0</u>	<u>2</u>
¹⁶ O ⁷⁺	328	20.5	2
<u>1608+</u>	<u>360</u>	<u>22.5</u>	<u>2</u>
³² S ⁹⁺	448	14.0	20
³² S ¹⁰⁺	490	15.3	12
$\frac{32S12+}{2}$	<u>565</u>	<u>17.7</u>	<u>5</u>
⁴⁸ Ca ⁹⁺	454	9.5	1.7
			LNL – INFN – Legnaro Italy

TABLE OF TANDEM-ALPI REPRESENTATIVE BEAMS

Beam	E [MeV]	E/A [MeV/A]	I target [pnA]
⁴⁸ Ca ⁹⁺	454	9.5	1.7
⁴⁸ Ca ¹⁰⁺	505	10.5	1.3
⁴⁸ Ca ¹¹⁺	550	11.5	0.5
⁵⁸ Ni ¹¹ +	550	9.5	13
⁵⁸ Ni ¹²⁺	602	10.4	10
⁵⁸ <u>Ni</u> 13+	<u>650</u>	<u>11.2</u>	<u>4.5</u>
⁵⁸ Ni ¹⁶⁺	770	13.3	3
			LNL – INFN – Legnaro Italy

TABLE OF T	ANDEM-ALP	I REPRESENTA	TIVE BEAMS
Beam	E [MeV]	E/A [MeV/A]	I target [pnA]
58Ni16+	770	13.3	3
⁶⁵ Cu ¹¹⁺	545	8.4	12
⁶⁵ Cu ¹²⁺	600	9.2	9
⁶⁵ Cu ¹³⁺	650	10.0	3.5
⁶⁵ <u>Cu</u> ¹⁶⁺	<u>777</u>	<u>12.0</u>	<u>2.5</u>
⁷⁴ Ge ¹¹⁺	534	7.2	2.5
⁷⁴ Ge ¹²⁺	592	8.0	2
			LNL – INFN – Legnaro Italy

TABLE OF	TANDEM-ALPI	REPRESENTA	TIVE BEAMS
Beam	E [MeV]	E/A [MeV/A]	I target [pnA]
⁷⁴ Ge ¹³⁺	645	8.7	1
⁷⁴ <u>Ge</u> ¹⁷⁺	<u>826</u>	<u>11.2</u>	<u>0.3</u>
⁸² Se ¹²⁺	582	7.1	7
⁸² Se ¹³⁺	639	7.8	4
⁸² <u>Se</u> ¹⁷⁺	<u>820</u>	<u>10.0</u>	<u>1.5</u>
⁹⁰ Zr ¹²⁺	610	6.8	1
⁹⁰ Zr ¹³⁺	630	7.0	0.6
⁹⁰ Zr ¹⁴⁺	700	7.7	0.3
¹⁰⁰ Mo ¹¹⁺	545	5.4	0.7
¹⁰⁰ Mo ¹²⁺	600	6.0	0.6
			LNL – INFN – Legnaro Italy

TABLE OF CURRENTLY AVAILABLE PIAVE-ALPI BEAMS

Beam	E [MeV]	E/A [MeV/A]	I target [pnA]
²² Ne ⁴⁺	243	11.0	2*
⁴⁰ Ar ⁹⁺	390	9.8	4÷10
⁸⁴ Kr ¹⁸⁺	800	9.5	5÷10
¹²⁰ Sn ²¹⁺	850	7.1	1
¹³² Xe ²⁷⁺	1200	9.1	2
¹³² Xe ²⁶⁺	1050	8	1
¹³⁶ Xe ³⁴⁺	1240	9.1	0.3
¹⁹⁷ Au ³⁰⁺	1200	6.1	1
			LNL – INFN – Legnaro Italy

Maintenance should be Preventive and sometimes (<u>in the rare case</u>) Last minute, predictive

..., in the real life sometimes you can start with one strategie and during the work, you change the last strategy....or if the Maintenance is too big, the special maintenance is necessary (maybe you will do the special maintenance in more steps in order to not interfere too much with the accelerator operation)

I think is very important to keep constant attention to every failure by statistic counter.

How to decide the Maintenance aproach ?

Identify all the machine systems, the subsystem of each system....., and after that you can decide the right aproach

Preventive

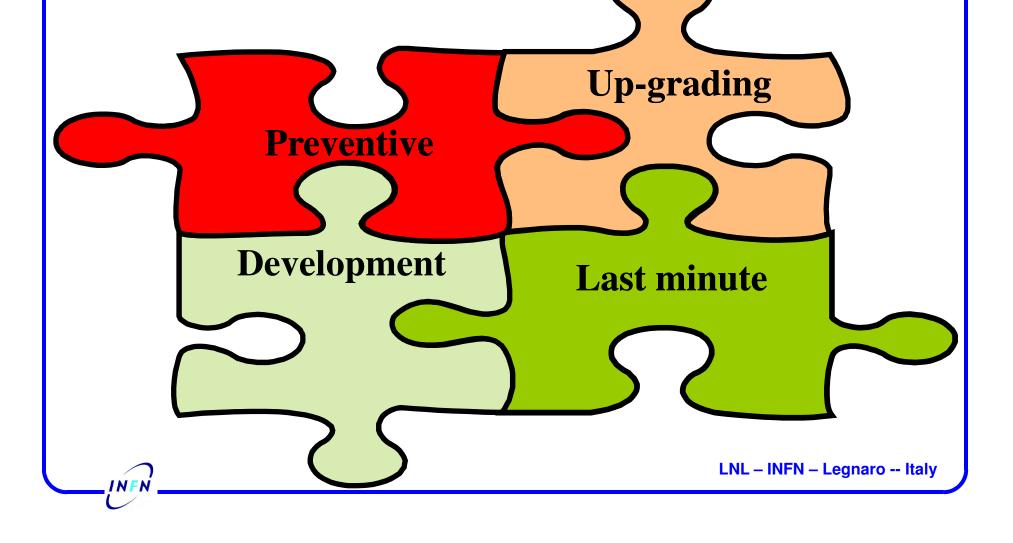
- Charge system control every maintenance
- Laddertron change evry 14000 hours
 - Alternatore belt change every 20000 hours
 - Corona point change every 3 years

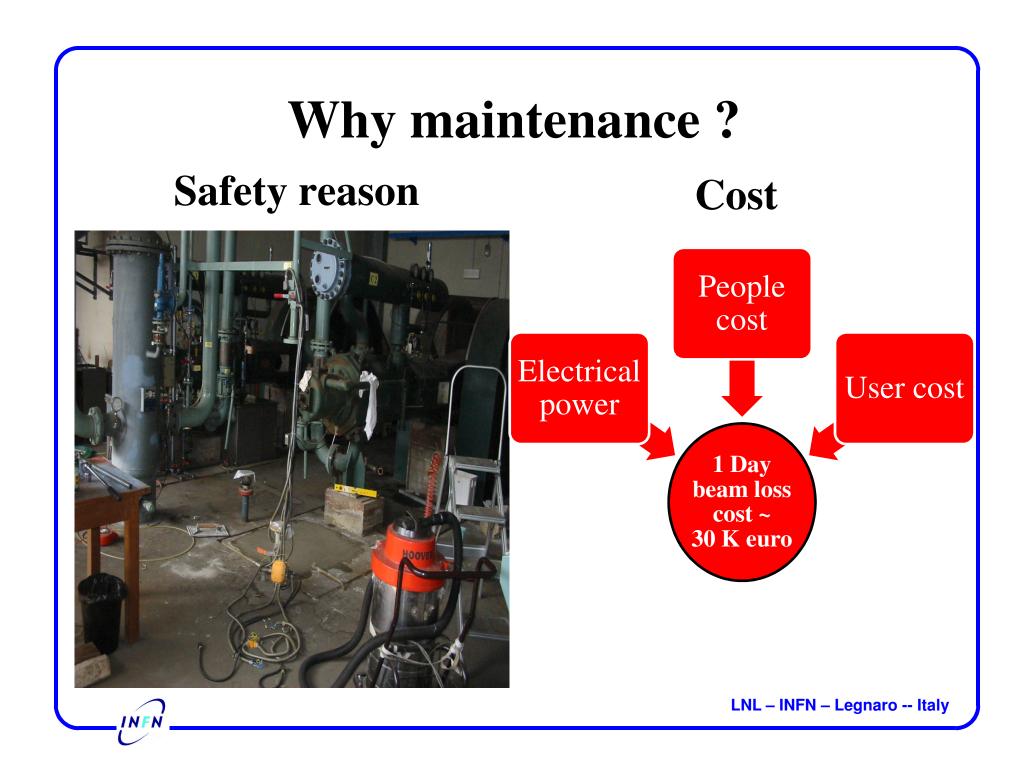
2 Subsitem

3 Subsistem

Voltage divider control every maintenance
Nylatron bar change every 40000 hours

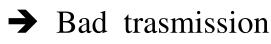
Last minute


- P.S. For the charge sistem in the terminal
- P.S. For vacuum pom p sistem in the terminal


If the number of Last minute maintenance events increases, change approach tos preventive maintenance, or development, or up-granding

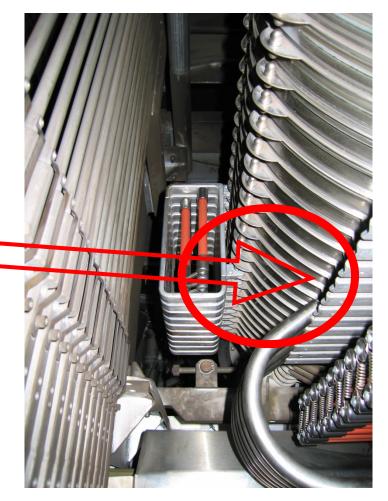
Not Maintenance alone

In any case the maintenace, preventive, Last minute, predictive, Development and the Up-grading, they must complete the necessary puzzle for high Relaiability, and high performance


Exemple of Last minute Maintenance

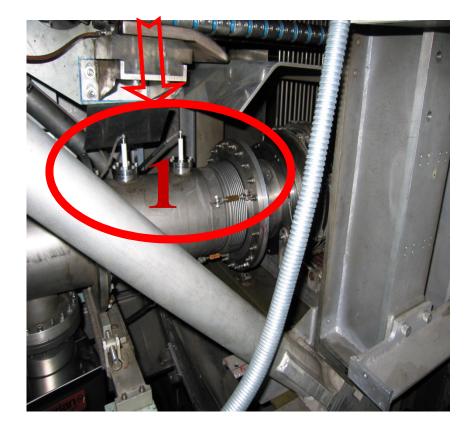
• July 2005

problem with resistors, value changed from ~500M Ω to ~340 M Ω

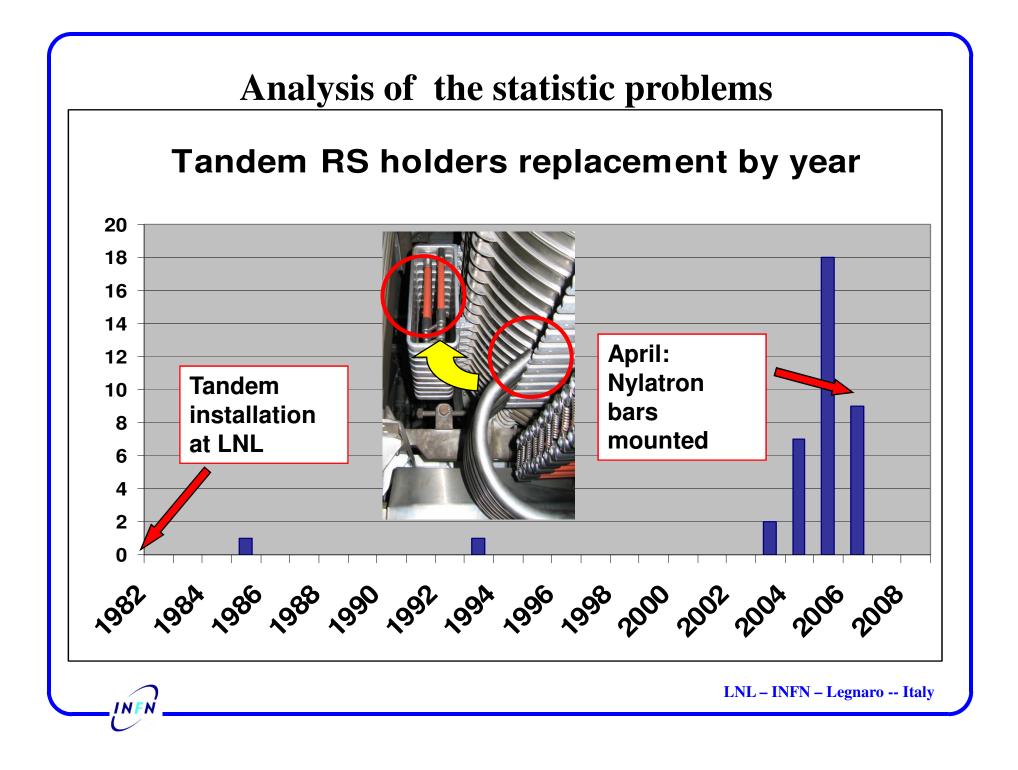

(particularly in sec.1 & sec.8).

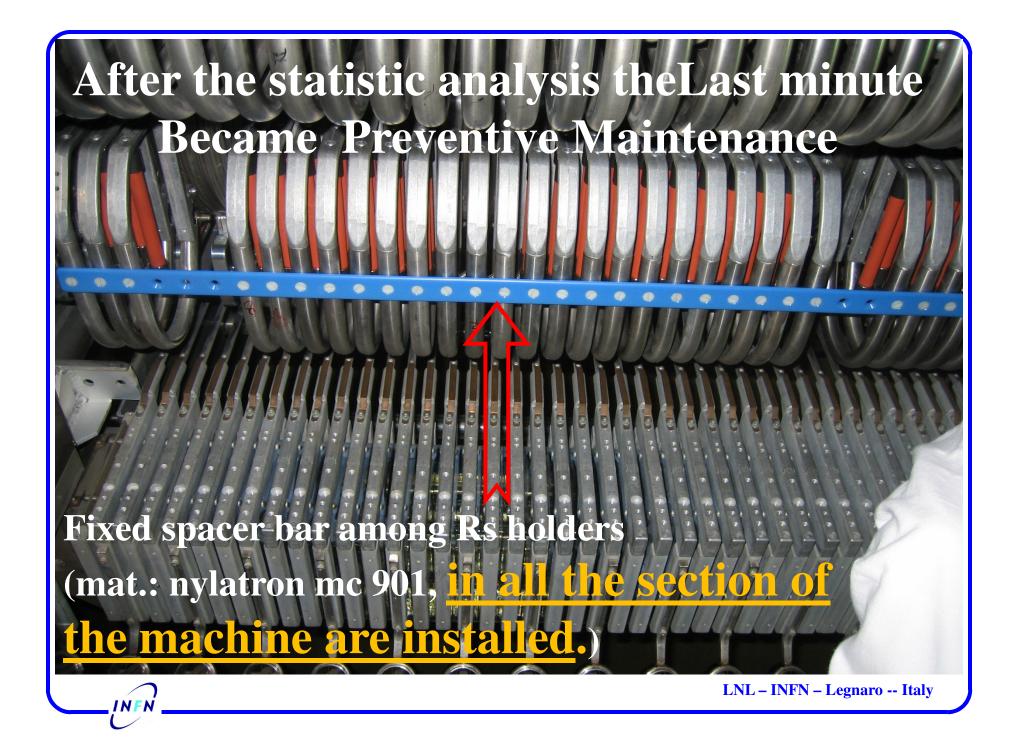
Initially resistors support broke

→ Low T.V.(12-12.5)MV

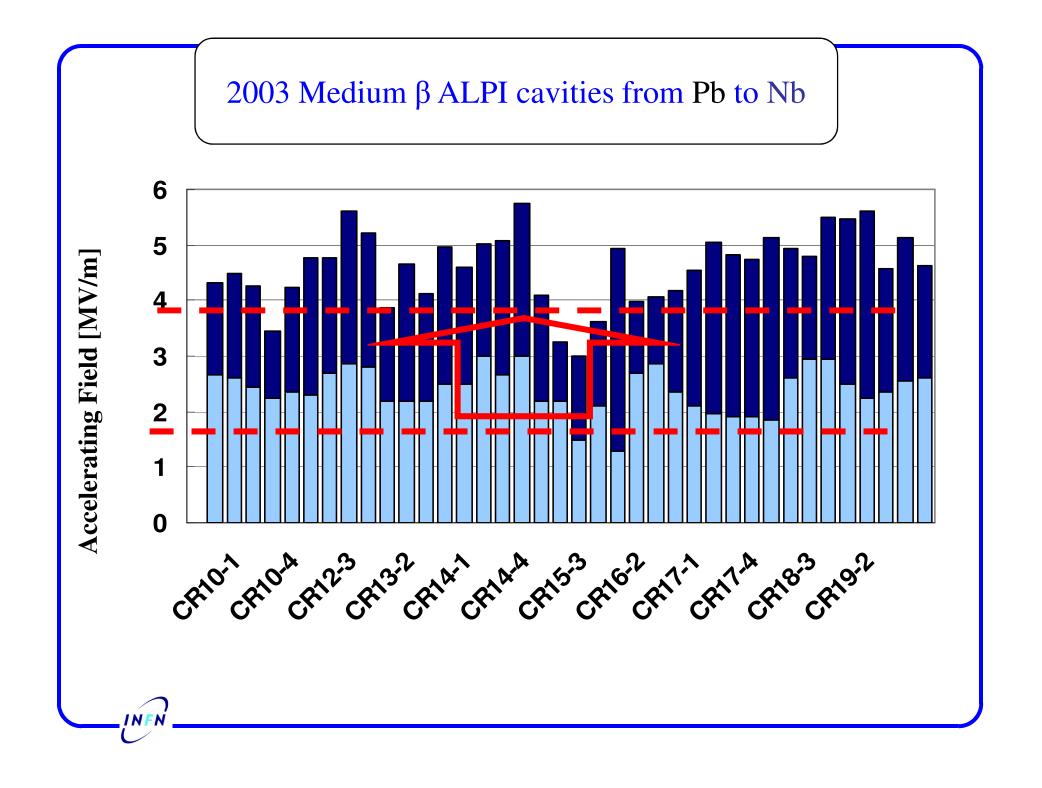

Repleced	Resistor	Support broken

Repeated problems with the Tandem , the Last minute aproach increased the statistic

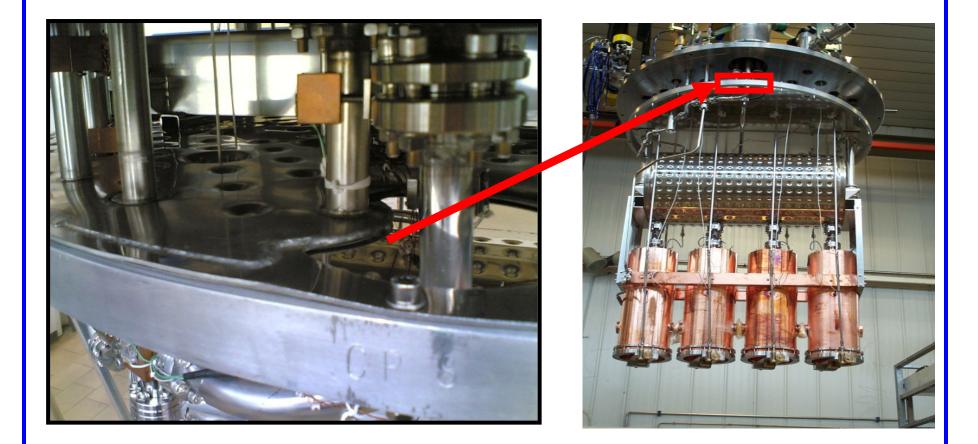

• Ocober-December 2005:


10 unscheduled opening: 9 for broken resistor support and 1 for vacuum problem

Could happen...Started as Development ended as Maintenance of all cryostats


LNL started to think about ALPI, a heavy ion SC linac equipped with QW, Pb on Cu resonators, less expensive and *easier* to build than Nb QWR.
Since the beginning we investigated the possibility to substitute in the future Pb with Nb.

A laboratory for Nb QWR sputtering was set up and a devoted research project was funded in 1987.


➡

- □ 1987: Funding a Development on QWR Nb sputtering
- □ 1988-1999: DC biased sputtering choice and system set-up
- **1990: Obtaining good SC performance on samples**
- □ 1991: Sputtering on a simplified prototype
- 1994: Design of a ALPI high b resonator suitable for sputtering production and compatible with existing cryostats
- □ 1995/1998 Production and installation of 4 high b cavities in ALPI
- □ 1998 Sputtering of a standard medium b ALPI resonator
- **2003** Upgrading of the medium b ALPI resonators

Exemple of preventive maintenance 2009-10

Problem of mechanical fatigue, causing He gas leak from cryostat shields (VERY Dangerus).

• Preventive Maintenance in all the cryostats LNL – INFN – Legnaro -- Italy

Could happen... Started as maintenance Lowβ tuning device ended as an upgrade

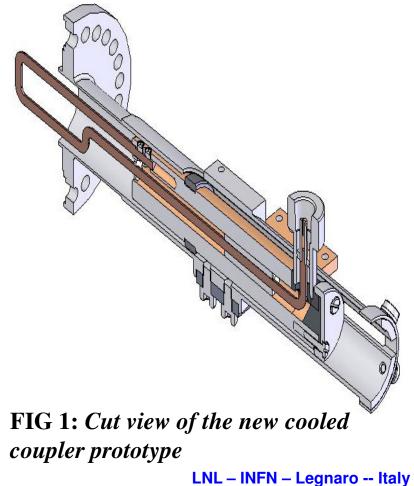
The main source of detuning, in these cavities, is the change of pressure of the helium bath. The standard ALPI mechanical tuner, although sufficient for slow corrections, is not well suited for frequency tracking in the presence of fast pressure fluctuations, due to large mechanical backlash and poor reproducibility.

ΔP in the Cold-box meaning Δf in the cavity

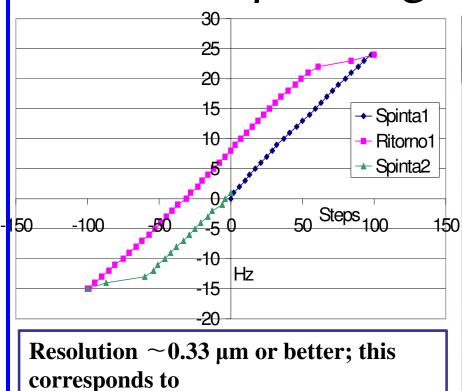
1. Resolution $\sim 0.33 \ \mu m$ or better; this corresponds to frequency resolution below 1 Hz.

2. Very small and reproducible backlash in order to allow a fast tuner recovery .

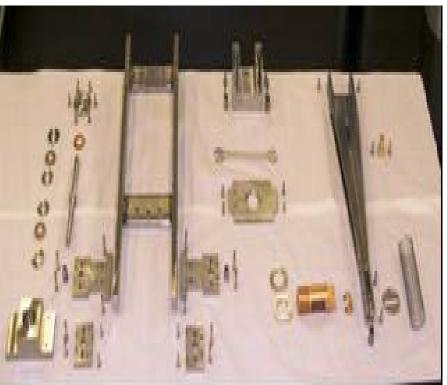
We used the lever design of the TRIUMF QWR tuner with commercial backlash-free "C-FLEX" joints. The system is linear and its theoretical resolution of on the tuning plate is $0.1 \mu m$. This results in about 0.3 Hztuning resolution for low- β quarter wave resonators; this value is well suited for our application. 1 mbar ~ 1 Hz



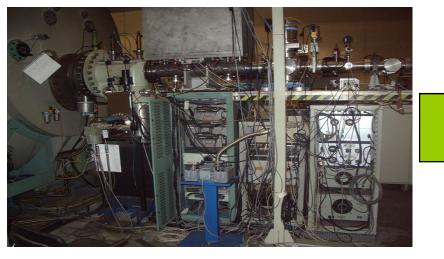
New funer


NFN – Legnaro -- Italv

The same problem (ΔP in the cold-box) trigger the start for an Upgrade of RF coupler for the Low β QWR


A new, liquid nitrogen cooled RF coupler, inspired by the ISAC_2 one, has been designed in order to maintain stable temperature with a forward power up to 500W, while limiting the thermal load to the liquid helium system within 1W. The main difference from the TRIUMF model is the 90 degrees corner near the connector, that allows keeping the overall length within 160 mm (the maximum available space in our cryostats) while leaving an effective strok of 80 mm; this results in a larger tuning range. The calculated heat load towards the liquid He circuit is around1 W.

Low-ß tuning device upgrading



frequency resolution below 1 Hz.

- C-flex joints do not deteriorate the Q (> 10⁹) of the QWR
- good linearity, resolution and reliability
- tuning range > 10 kHz

Safety maintenaince of electrical wiring at Tandem XTU

INFN

Smooth transition from an all-on-paper to all-on DB E-Logbook

N	licrosoft Excel - PIA	VE-ALPI_Cont	roller.xls					8~~							- 8 >
	<u>Eile M</u> odifica <u>V</u> ise	ualizza <u>I</u> nseri	sci F <u>o</u> rmato S	<u>5</u> trumenti <u>D</u> at	i Fi <u>n</u> estra <u>?</u> Ad	do <u>b</u> e PDF							Digitare una do	manda, 🝷	-8>
	📴 🛃 🖪 🖪	👌 🖑 🛍	🔏 🗈 🔁 • 🕯	🍕 12) - (21	- 🚱 🔍 Σ -	2 I ZI 🛍 🤣	• 🔞 💂	🔁 🔁 🐔 💂							
	•	• G	C <u>S</u> ≣ ≡	= = = .	% 000 € %	约 筆 律	• 🐴 • 🛕 • 💂	Protezione	e 🛃 🔆	👱 🥢 📮					
	+	fx	-	_	_			1 32 1							
_	A	В	C	D	E	F	G	Н	1	J	K	L	M	N	0_
1	CAVITI	ES C	ontrol	S											
	LNL	ven-29	feb 2008	9.50											1
3	Marca		4.2.6												
4	Mass		136	-	MAGNE	TS							12 12		
5 6	Charge	(Q)	23	- 10 17						-			- B		
7	Read Cav	lities	Write Ca	vities	Copy to	White	Rescale		STORY						
8 9	neau ca	/iues	V WILLE CC	wides	Copy to	VVIICe	Nescale	-	oran						
10															
11	Reading from	n Cavitie:				Writing to Ca	avities								
	QWR	AMP.		STATUS		QWR	AMP.	Ref PHASE	Reference						
		MV/m	deg 470			NAME	MV/m	deg 161	deg	5.			.e		
14	B3-40MHz B3-80MHz	2.174 0.725		1004000		B3-40MHz B3-80MHz	2.199 0.768								
15 16	B3-80MHz B3-120MHz	0.725		on on		B3-80MHz B3-120MHz	0.193						- 13		
10	SRFQ1	19,191	0	22 22 27		SRFQ1	19.191	0	0				2 2		
17	SRFQ2	18.907				SRFQ2	18.907	164	139	-					
10	PC1-QWR1	3.577	965232	0.00000000		PC1-QWR1	2.446		-90	-					
20	PC1-QWR2	3.972				PC1-QWR2	3.048		60	-			6 G		
21	PC1-QWR3	3.874		10000000		PC1-QWR3	3.493		30				6		
22	PC1-QWR4	3.782				PC1-QWR4	3.489		-25				6		
23	PC2-QWR1	3.820				PC2-QWR1	3.820		-20	-			6 S		
24	PC2-QWR2	4.306		on		PC2-QWR2	3.838		-20		1		6		
25	PC2-QWR3	3.986	304	on		PC2-QWR3	3.850		-20				6		
26	PC2-QWR4	3.848	6	on		PC2-QWR4	3.848	6	20				9		
77		257 217 Magnets Story		On Cavities Sterry	🖌 Magnets Calib 🖌	HER1 Magnets Raw / Cav	510 560	38	-00				0))
Pron		magnets story	ACATILIES &	caviues scory		magnets kaw X Cav	nues kaw X mput	/			1.1	1		NUM	

Smooth transition from an all-on-paper to all-on

DB E-Logbook

A	• f ≈ 3% B	С	D	E F	G H		J K	L	M	N	20
	NETS C						-				
347,7874 G.1 (2007/2017)	NETS C										1
LNL	gio-28 f	eb 2008	17.05								
Ma	iss (A)	136						PIAVE			
	rge (Q)	23	- CA	AVITIES		0					1
Ulla		25						PIAVE_AL	н		2
Read	Magnets	Write	Magnets	Copy to Write	Rescale	STOR	(° ALPI			1.0
-											
Magnet	Read Current		Imposed Currei								
name	A	%	A	%							
PD1	0.0000	0.000%		3.000%						_	
3PQ1A	0.0000	0.000%		36.037%							
3PQ1B	0.0000	0.000% 0.000%		28.099%					2		2
1PQ1 3PQ2A	0.0000 0.0000	0.000%	88.0493	36.687%		1					
3PQ2B	0.0000	0.000%	20022211-20222211-20222211-	29.539%					19		16
PD2	0.0000	0.000%		2.000%		<u> </u>					12
2PQ1A	0.0000	0.000%		14.761%							
2PQ1B	0.0000	0.000%	2008/00/2017/2017/2017	11.878%	1	1			9		8
2PQ2A	0.0000	0.000%		17.428%							
2PQ2B	0.0000	0.000%		23.548%							
2PQ3A	0.0000	0.000%	63.6456	39.778%							
2PQ3B	0.0000	0.000%	20000 *** 0.0000000 ****	27.265%							
2PQ4A	0.0000	0.000%		25.435%					19		1
2PQ4B	0.0000	0.000%		25.165%					-		
PST1A	0.0000	0.000%		-1.143%	Var Daw / Tarak /			21			D
ito	CIS / Magnets Story	X CAVITIES X	Cavities Story / Ma	gnets Calib 🖌 Magnets Raw 🖊 Cavi	ties Raw X Input /		1	↓	118	NUM	1

Smooth transition from an all-on-paper to all-on DB E-Logbook

1		d 6																			0																			
a	al		- 1	• 0	G	С	S		=	1	* a *	-	6 00	€	*,0	00 .	律制	E 🖸	<u> </u>	> -	A - ,	, i k	•	Prote	ezione.	🤞	× 🗈			Ŧ										
	K15	-		fx																																				
	A	HJ	HK	HL	HM	H	I H	DH	HP	HQ	HB	HS	HT	HU	HV	H₩	HX	HY	HZ	IA	IB	IC	ID	IE	IF	IG	IH	-	IJ	IK	IL	IM	IN IO	D IF	P IQ	IF	i IS	IT	IU	IV
	COPY					8																														333		8		1999
						8						1																100												
	OK	20.6	b-2008	30.0	- 200	000				2000	02	2000	00	. 2000	02		02		00	. 2000	02	2000	02	2000	00	2000	03-mar-3			2000	00	2000				1993				
	and the second se																				11.46 13						15.51 136		16.21 13		16.51 136									
	B3-40MHz	2.225		2.225					.174	172	2.174	172	2.174	172	2.174	172		172	2.174			172	2.174	172		172	2.174		2.174	172	2.174	172		333		1999				1000
	B3-80MHz	0.768		0.768					.768	143	0.768	143	0.768	143	0.768	143		143	0.768	143		143	0.768	143		143	0.768		0.768		0.768	143		333 <u>-</u>				8		
	B3-120MHz	0.193							.252	119	0.252	119	0.252	119	0.252	119		119	0.252	119	0.252	119	0.252	119		119	0.252	119	0.252	119	0.252	119		33		- 333		8	-	- 833
	SRFQ1 SRFQ2	19.19		0.0000000		0 19. 8 18.		-	19.41 18.91	176	19.41 18.91	176	19.41 18.91	176	19.41	176	19.41 18.91	0 176	19.41 18.91	0 176	19.41 18.91	176	19.41 18.91	176	19.41 18.91	176	19.41 18.91	176	19.41 18.91	176	19.41 18.91	176		333 —	-	-88		8		- 333
	PCI-QVR1	2.446		2.446		×2			.446		2.446	117	2.446	117	2.446	117		117			2.446		2.446	117		117	2.446		2.446		2.446	117		333		-88		8		1888
	PC1-QVR2	3.048	263	3.048	26	3 3.04	18 2	63 3.	.048	263	3.048	263	3.048	263	3.048	263	3.048	263	3.048	263	3.048	263	3.048	263	3.048	263	3.048	263	3.048	263	3.048	263				188				
	PC1-QWR3	3.493		3.493					.493	174	3.493		3.493	174	3.493	174		174	0.100	174			3.493	174		174	3.493		3.493		3.493	174		<u></u>		-88		<u> </u>		-88
	PC1-QVR4 PC2-QVR1	3.489		3.489		-			.489 3.82	90	3.489	90 42	3.489 3.82	90 42	3.489	90 42		90 42		90 42		90	3.489 3.82	90 42	3.489	90 42	3.489	90	3.489 3.82	90 42	3.489	90		333 —		-88				-888
	PC2-QWR2	3.838		3.838					.838	208	3.838	208	3.838	208	3.838	208		208		208		208	3.838	208		208	3.838		3.838		3.838	208		333 —		-88				- 233
	PC2-QVR3	3.85				7 3.8	35 3		3.85	347	3.85	347	3.85	347	3.85	347		347	1.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	347	3.85	347	3.85	347	3.85	347	3.85	347	3.85	347	3.85	347		888		188		8		1888
	PC2-QVR4	3.848	-	3.848		3.84			.848	51	3.848	51	3.848	51	3.848	51		51		51			3.848	51	3.848	51	3.848		3.848	0.0000	3.848	51			-	188				
	HEB1	498.9		498.9					65.6	88	465.6	88	465.6	88	465.6	88		88		88	465.6	88	465.6	88	465.6	88	465.6		465.6		465.6	88			-	-88		8——	-	-833
	HEB2	201	291	201	29	185	.4 2	291 1	85.4	291	185.4	291	185.4	291	185.4	291	185.4	291	185.4	291	185.4	291	185.4	291	185.4	291	185.4	291	185.4	291	185.4	291		888 —		-888		3	-	-888
t						8		-83																										888 —		-888		3	-	- 3333
	CRB2-Q1	0.217		0.217		7 0.2	17).217	7	0.217	7	0.217	7	0.217	7	0.217	7	0.217	7	0.217	7	0.217	7	0.217	7	0.217	7	0.217	7	0.217	7						8 		
	CRB2-Q2	3.801		3.801		0 3.8			3.801	0	3.801	0	3,801	0	3.801	0	3.801	0	3.801	0	3.801	0	3.801	0	3.801	0	3.801	0	3.801	0	3.801	0		888 —		- 888		<u> </u>		- 333
	CRB1-Q1 CR04-Q1	13.91		13.91 3.225		0 13. 5 3.22			13.91 .225	215	13.91 3.225	215	13.91 3.225	0 215	13.91	215	13.91 3.225	U 215	13.91 3.225	215	13.91 3.225	215	13.91 3.225	215	13.91 3.225	215	13.91 3.225	215	13.91 3.225	215	13.91 3.225	215		333 —	_	-88		3	-	-833
	CR04-Q2	1.1		1000000		0 0.50			.503	0	0.503	0	0.503	215	0.503	0	0.503	213	0.503	0	0.503		0.503	0	0.503	0	0.503		0.503		0.503	0				-88		8		
1	CR04-Q3	4.225	304	4.225	30	4 4.22	25 3	04 4.	.225	304	4.225	304	4.225	304	4.225	304	4.225	304	4.225	304	4.225	304	4.225	304	4.225	304	4.225	304	4.225	304	4.225	304				1888				
	CR04-Q4	4.062		4.062		6 4.06			.062	356	4.062	356	4.062	356	4.062	356		356	4.062	356	4.062	356	4.062	356	4.062	356	4.062		4.062		4.062	356		<u></u>		-88		<u> </u>		
	CR05-Q1 CR05-Q2	3.608		3.608					.734	193 235	3.734	193 235	3.734	193 235	3.734	193 235		193 235	0.101	193 235	3.734 4.132	193 235	3.734 4.132	193 235		193 235	3.734 4.132		3.734 4.132		3.734	193 235		333 —		-88				-888
	CR05-Q2	4.134		4.134					134	253	4.134	253	4.134	253	4.134	253		253		253	4.134	253	4.134	253		253	4.134		4.134	253	4.134	253		333 —		-88				- 888
	CR05-Q4	0.745		0.745		0 0.74	15	0 0.	.745	0	0.745	0	0.745	0	0.745	0	0.745	0	0.745	0	0.745		0.745	0	0.745	0	0.745		0.745		0.745	0						8		
	CR06-Q1	4.108		4.108	12				108	125	4.108	125	4.108	125	4.108	125		125		125		125		125		125	4.108		4.108		4.108	125			1			8		
	CR06-Q2 CR06-Q3	0.366		0.366	11	0 0.36			.366 .043	0	0.366	0 117	0.366 3.043	0 117	0.366	0	0.366	0 117	0.366	0	0.366 3.043		0.366	0	0.366	0 117	0.366		0.366 3.043		0.366	0		333 —		-88		3 		
	CR06-Q3	3.043		3.349					.043		2.785	132	2.785	132	2.785	132		132		132			2.785	132	0.505.02.0	132	2.785		2.785		2.785	132		333 —		-88		8		- 888
	CR07-Q1	4.331		4.331					k.331	208	4.331	208	4.331	208	4.331	208		208		208	4.331	208	4.331	208		208	4.331		4.331	208	4.331	208		88				8		
	CR07-Q2	4.408		4.408					.408		4.408	148	4.408	148	4.408	148		148	1.100	148			4.408	148		148	4.408		4.408		4.408	148						8		
	CR07-Q3	3.627		3.627					.627		3.627	132	3.627	132 98	3.627	132		132 98		132		132 98	3.627	132		132	3.627		3.627	132 98	3.627	132		88				8		
	CR07-Q4 CR08-Q1	4.401		4.401		8 4.4 0 0.33			.401 .336	98	4.401 0.336	98	4.401	98 0	4.401	98	4.401	98 0	4.401	98	4.401 0.336	000000	4.401 0.336	98		98	4.401		4.401	000000	4.401 0.336	98		333 —		- 88		8		
	CR08-Q2	0.391		0.330		1 0.3			0.391	ា	0.330	1	0.330	Ĭ	0.330	1	0.336	1	0.330	1	0.336	1	0.330	1	0.330	1	0.391		0.330	1	0.330	1		333				8		
	CR08-Q3	0.351		0.351		0 0.3	51		.351	0	0.351	0	0.351	0	0.351	0	0.351	0	0.351	0	0.351	0	0.351	0	0.351	0	0.351		0.351	0	0.351	0						8		
	CR08-Q4	0.447		0.447		0 0.44			.447		0.447		0.447	. 0	0.447	0	0.447	0	0.447	0	0.447		0.447		0.447	0	0.447		0.447		0.447	0		333 <u> </u>	-	_88		3		
	CR09-Q1	4.029	234	4.029	23	4 4.02	29 2	34 4.	.029	234	4.029	234	4.029	234	4.029	234	4.029	234	4.029	234	4.029	234	4.029	234	4.029	234	4.029	234	4.029	234	4.029	234		888		1999		S.		1998

All the value of the magnets, and RF, are recorded every second

Maintenance Future?

Thank you for your attention