WAO10 April 12 – 16, 2010 INTEC, KAERI, Korea

Maintenance Strategy of the PEFP Proton Linear Accelerator

Dae-il Kim (dikim@kaeri.re.kr) PEFP, KAERI

- I. What we have, what we have to do
- II. 20-MeV experiences
- III. 100-MeV plans
- **IV. Summary**

What we have

Facilities

- 20MeV proton accelerator
- Auxiliary parts for the accelerator
- Electrical power station
- Cooling station
- Experiences on 20-MeV machine
 - installation,
 - operation,
 - maintenance

Electrical power system utilities

What we have to do

- Installation at Gyeongju site
 - Disassembly of 20MeV linac
 - Packing and transportation
 - Installation
- After installation,
 - commissioning

TR21

TR25

tti far

- operation
- maintenance

R23

TR22

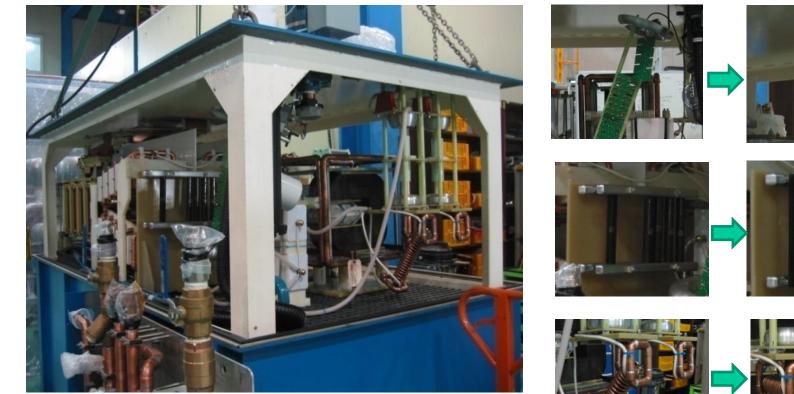
- I. What we have, what we have to do
- II. 20-MeV experiences
- III. 100-MeV plans
- **IV. Summary**

Installation

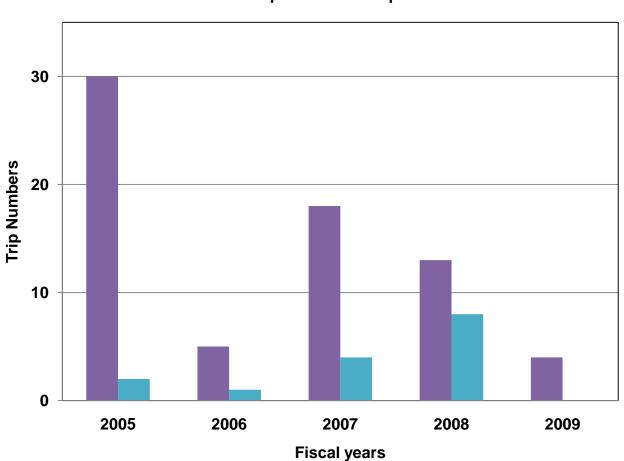
- Experience on the heavy but carefully treated parts
- DTL tank
- Alignment
- Klystron
- Supporting structure
- Modulator

Proton Engineering Frontier Project

Packing and Transportation


- Experience on the heavy but carefully treated parts
 - Klystron : Return of the spare klystron to factory
 - DTL tank (?) DT alignment

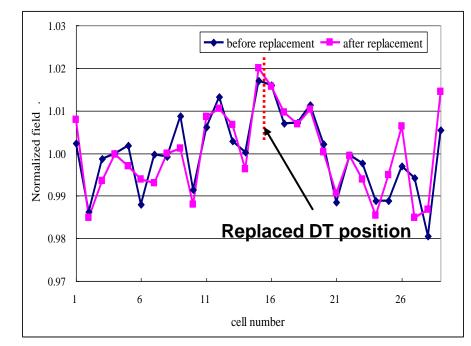
Packing and Transportation



Inspection of parts inside oil tank after the delivery find to the damaged components

Maintenance Statistics

HV Trips
Other Trips


Proton Engineering Frontier Project

DT Replacement

Reason

- Electromagnet failure at tank 3 HE / tank 4 LE side end plate
- Vacuum leakage at tank 4 / 15th drift tube
- On line replacement of the DT
- Check after replacement
 - Field profile variation < 1%
 - Resonant frequency compensation using wall temperature < 2 deg. C

Field profile before and after replacement 0

Drift tube replacement

Vacuum System – Commissioning stage

Vacuum system components of 20 MeV Proton Linear Accelerator

PEEPProton Engineering

r	-	-		l	· · · · ·				
Pump	Comp.	Model	Pumping speed	Seal	Flange	No.			
	Varian	Triscroll 300	250L/s	Viton O-ring	NW25	5			
Scroll Pump	Iwata	ISP-500B	500L/s	Viton O-ring	NW40	3			
	Leybold	T1600	1600L/s	Copper	CF250	1			
ТМР	Osaka	TG1300MCAB	1300L/s	Copper	CF200	2			
	Varian	TV301 NAV	280L/s	Copper	CF8"	4			
NEG Pump	Saes getters	CapaciTorr B 1300-2 MK5	1300L/s	Copper	CF8"	6			
Ion Pump	Varian	Vacion Plus 300	300L/s	Copper	CF8"	8			
Image: Nonsource Image: Nonsource <td< th=""></td<>									
X Xm Xm Y Xm X Xm X Xm X Xm			At first	t, inly used the ⁻	TMP for	DTL tan			

Vacuum System – Operation stage

- Change of the vacuum system operation from commissioning stage (2007)
 - TMP fails
 - Regular maintenance of the scroll pump
- Operation method
 - At initial evacuation, use a TMP (1 TMP/DTL tank)
 - At normal operation,

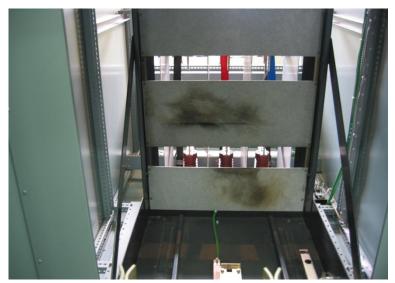
use ion pumps as main pump (2 ion pump/DTL tank) gate valve close, turn off the TMP

TMP: Blade broken

Scroll pump: Replace of tip seal and bearing

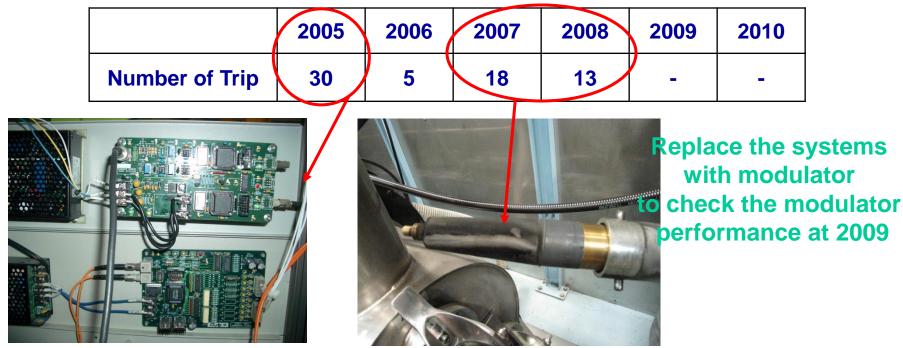
Electrical Power Station

- 22.9kV, 8MVA capacity
- VCB at the electrical power station
 - 8 years since manufacture
 - Coronal discharge at the VCB


(June, 10, 2007)

• The number of permitted operation is within the limit, but the old causes problem

VCB and its bus bar



FRP barrier

Newly installed one

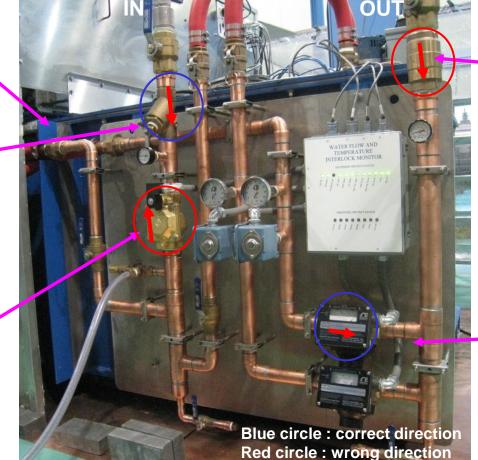
High Voltage DC Power Supplies

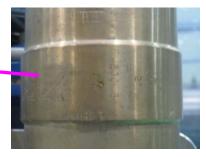
- -100kV, 20A, <20J : 2 sets
- Arc energy limiting device : crowbar (RFQ), opening switch (DTL)
- Trips of the high voltage DC power supplies caused by
 - Malfunction of the protection circuit (DTL, 2005)
 - Crowbar trip due to the klystron arcs (RFQ, 2007~ 2008)
 - : high voltage connectors of the inside and outside the oil tank

Change the circuit to optical (DTL case)

Change the connector and re-adjust the inside connector (RFQ case)

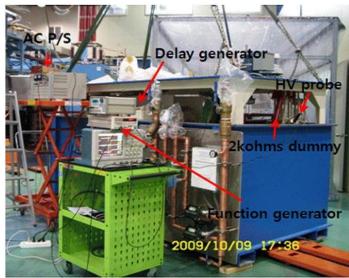
Installation of the Modulator


- Valve direction of the cooling circuit
- After installation of the cooling circuit, we could not operate the cooling circuit
- The directions of the check valve and solenoid valve were reversed



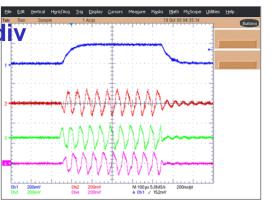
Strainer

Solenoid valve

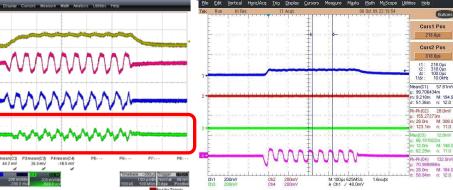

Check valve

Flow meter

Installation of the Modulator


Inspection and test for the finding of the strange pulse

Test after exchange the IGBT board


- HVCM output voltage : 7.5kV
- SCR voltage : 150V
- pulse width : 100us/div

- C-phase of the CH4 is the strange pulse
- Ch 1: HVCM output voltage,

Ch2&Ch3&Ch4 : A&B&C phase current

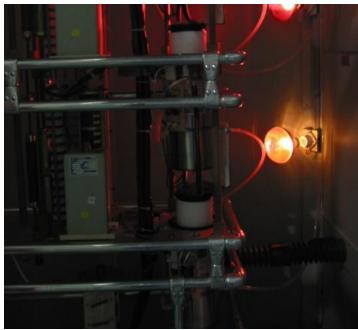
Cooling System

- 2MW, 6000lpm, 5bar : 2 sets
- Need regular maintenance pump, heat exchanger, de-ionizer
- Problem : water leakage occurs many times
 - DTL DT cooling line
 - Klystron oil tank
 - RF load cooling circuit

Water leakage at klystron oil tank

Leak from the RF load cooling line joint

De-ionizer filter


Example of the Spare Parts

- Keep spare ignitron switches as a crowbar switch of the HVPS
 - Original one : glass sealed type
 - Spare parts : ceramic sealed type
 - : New but unused for 6 years
- There was a problem for the unused new ignitron
 - Vacuum degradation and lost of the high voltage hold off capability
 - Disadvantage of the ceramic sealed type
- Need policy to choose the proper number, and storage period

of the spare parts

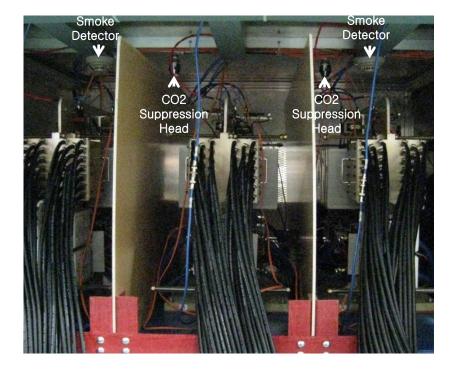
Glass sealed type

Ceramic sealed type

- I. What we have, what we have to do
- II. 20-MeV experiences
- III. 100-MeV plans
- **IV. Summary**

Scheduled Maintenance

- Regular maintenance period
 - August at summer season
 - Dec. ~ Jan. at winter seaon
- Make maintenance list, and do as the list
- List examples
 - Vacuum system
 - Scroll pump, ion pump regen., NEG regen.
 - High voltage components
 - Insulation oils, silica Gel, keep clean
 - Cooling system
 - Grease, heat exchanger plate, DI system
 - Alignment of the system


- Prepare spare part to reduce the down time
 - Disadvantage : Many important parts should be imported
 - Need to decide the number of spare part
 - Need to consider the unused period
 - Need to consider the delivery time
 - Need to consider the possible rental service
 - It is necessary for us to get advice from other experienced lab.
- Set up the possible fault scenarios and install MPS
- Long delivery items
 - Klystron
 - Modulator
 - etc.

Example of the MPS

Modulator

-105kV, 5.8MW peak, 9% duty, 1.5ms long, 60Hz

- CO2 system of the modulator as MPS
 - Thank to the recommendations from the SNS

• Spare part list of the modulator

- Proposed by the manufacturer
- Decide items, number based on the strategy

Description	Price	Quatity	Delivery Time	Dynapower	Vendor
IGBT Switchplate Assembly				0	
Rogowski Coil Main					
IGBT, 1200A,3300V					0
IGBT Driver Board				0	
IGBT Fibler Optic Cables					0
IGBT gate bypass cards					
Modulator Differential Line Driver					
HV Boost Transformer				0	
Twinax Cable Terminations					
Twinax Cable Terminations					
Rogowski Integrator Box					
Oil Filter					0
Fan Filter					
Oil Pump Motor, 1 1/2 hp, 3500RPM					0
Safety Enclosure Fan					0
Oil Level Switch					0
3Ph 30A, Y Female Recepticle					
3Ph 20A, Y Female Recepticle					
3Ph 20A Y Male Recepticle					
Dessicant Breather Assembly					
Rectifier Card Assembly				о	
Energy Storage Capacitor				0	
IGBT bypass 10 uF 4kV caps				0	
IGBT 10 uF 2kV caps				0	
1800 pF 160 kV resonating caps					
900 pF 160 kV resonating caps				0	
500 pF 180 kV output caps				0	
50 kV resonant rectification caps				0	
.03 uF doubler caps				0	
DSP Control Chassis				0	
Dynamic Fault Detection Chasis				0	
HV connector assemblies				0	
Switchplate Handling and Installation fixture					

Description	Price	Quatity	Delivery Time	Dunanowor	Vendor
FUSE, 1.00A, 250V	FILCE	Quality	Delivery Time	Dynapower	0
FUSE, 200E AMP, 5.5KV					0
PILOT LIGHT, AMB					0
PILOT LIGHT, GRN					0
DIODE, 1010A, 5600V, DISC, 58MM					0
THYRISTOR, 2100A, 4200V, DISC, 7.7MM					0
H/F GATE DRIVE, 6 PUL, REV				0	
FIRING CKT LOGIC, 6/12 PLS				0	
INTERFACE, ZFCT				0	
REGULATOR, SWTCHR, REV B MO				0	
CURRENT IMBALANCE DETECTOR				0	
ISOLATOR, DIFF, HIGH PRECISIONRE				0	
H/F GATE DRIVE, 6 PUL, REV D 10K				0	
FUSE, 7.00A, 250V				Ŭ	0
SWCH, THRM, L-185, NC RED					0
SWCH, THRM, 356F, NC,PEPI					0
XFMR, CNTR, 500VA, 3300:110,50/60				0	
VALVE, BALL, 1-1/4, UNION, CPVC					0
METER, DIG PAN, 3-1/2, 20VDC					0
CNTR, 200A, 6.6KV, SF6,110VAC COIL					0
CURR SENS, 500A					0
ISOLATOR, DIFF, HIGH PRECISION RE					0
BRACKET, MOUNT, 1INCH					
VARISTOR, 1700VRMS, 6000J, BB					0
CAP, 0.82MFD, 3300VDC					0
RES, OHM, 15.00 190W, NON-IND					0
PROG CNTL, SLC500, POWER SUPPLY					
PROG CNTL, SLC500, PROCESSOR					
PROG CNTL, SLC500, 7 SLOT RACK					
PROG CNTL, SLC500, 12KFLASH					
PROG CNTL, SLC500, 16 AC IN, 120V					
PROG CNTL, SLC500, 8NO, 3A/120VAC					
PROG CNTL, SLC500, 16 RLY OUT					
PROG CNTL, SLC500, 8DC IN, SINK					
MOUNTING BOARD, 4 POSITION					
INPUT MOD, 5V LOG, 2.5-2.8Vin					
CNTR, 400A, 5KV, 120/230/50/60/DC					0
HT EXCH, W/A, 5291CFM, 3HP					0
SWCH, FLOW, 1.25 BODY, 20GPM					0
PWR SPLY, +/-15V, 1.5A, CA SE BB					0
FUSE, 15A, 250V					0
FUSE, 4.50A, 250V					0

SCR unit

Summary

- We experienced on
 - transportation
 - installation
 - operation
 - maintenance

in the 20 MeV proton linear accelerator

- We will plan
 - make maintenance list, and do as the list for scheduled maintenance
 - prepare spare part to reduce the down time

for the unscheduled maintenance

- consider to buy the spare part
- set up the possible fault scenarios and install MPS

in the 100 MeV proton linear accelerator