Preliminary Measurement of ¹⁰Be isotope by 1 MV AMS

Hong, Wan

Korea Institute of Geoscience and Mineral Resources (KIGAM)

Ion beam application group of KIGAM

1 MV AMS

1.7 MV Pelletron

500 kV single ended Implanter

Applications of the group

Cosmogenic nuclide, ¹⁰Be

The 7th International Workshop on Accelerator Operations (WAO-7), April 12 – 16, 2010, Daejeon, Korea

Cosmogenic nuclide, ¹⁰Be

Half-life: 1.5 million year

- Produced by spallation reaction between cosmic rays and ¹⁶O or ¹⁴N
 - 1.21 ± 0.70 x 10⁶ atoms/cm²/yr in atmosphere
 - 0.35 ~ 1.89 x 10⁶ atoms/cm²/yr in ice core and sediment
 - The production rate is inversely correlated with geomagnetic dipole moment.
- Abundance of ¹⁰Be in atmosphere
 - 7 x 10⁶ atoms/m³ in troposphere
 - 1.3 x 10⁶ atoms/m³ in stratosphere
- In-situ production in rocks by neutron spallation with ¹⁶O and by muon induced reaction
- Used to study on geology, mineralogy and geography as a tracer

 Isotope ratio: ¹⁰Be/⁹Be = 1 x 10⁻¹¹ in marine sediment = 5 x 10⁻¹⁴ in rocks (in-situ)

Specifications of AMS of KIGAM

- Dimension : 4.2 m × 6.2 m
- **50** sample multi-cathode sputtering source (35 kV, 5 μA for beryllium)
- Low energy bending magnet: 90 deg., 9.8 MeV · amu
- Bouncing system: 3kV, 100 Hz, ¹⁴C, ¹⁰Be, ²⁶Al measurements are available
- I MV Tandem accelerator (2mA) with Ar stripper
- Analyzing magnet: 90 deg., 63 MeV · amu
- Absorber foil in front of ESA, 150 nm Si₃N₄ foil
- Electric spherical energy analyzer (ESA): 120 deg., 60 kV
- Ionization chamber with two anodes, 75 nm Si₃N₄ window
- Counting time: 40 minutes per a Be sample in typical case
- Background: ¹⁰Be/⁹Be = 2 × 10⁻¹⁴ in typical case

Ion Beam Application Group

1 MV AMS system of HVEE (4110Bo- AMS- 3)

Accelerator Mass Spectrometer at KIGAM

The 7th International Workshop on Accelerator Operations (WAO-7), April 12 – 16, 2010, Daejeon, Korea

Ion Beam Application Group

SO110 Negative Ion source

- At Cs temperature = 95 °C
 Max. Beam current = ~ 100 μA for C⁻
 ~ 300 nA for Al⁻
 - ~ 5 μ A for BeO⁻

Ion Beam Application Group

LE magnet scanning (BeO target)

Ion Beam Application Group

11

Stable Isotope Measurement

Absorber foil

- Masses of ¹⁰Be and its isobar, ¹⁰B
 ¹⁰B: 10.0129 (1398.472 keV)
 ¹⁰Be: 10.0135 (1398.486 keV)
 ΔM: 0.0006 (60 ppm)
 ΔE before the foil: 0.014 keV (10 ppm)
- Si₃N₄ absorber Thickness = 150 nm dE at the foil of ¹⁰Be = 170.72 keV dE at the foil of ¹⁰B = 221.04 keV Trans. Energy of ¹⁰Be = 1227.8 keV Trans. Energy of ¹⁰B = 1177.43 keV Δ E after the foil: 50.34 keV (4.1 %)
- Beam disperses at the foil

Electrostatic spherical Analyzer

- Angle: 120 °
- Radius: 650 mm
- ¹⁴C measurement: 55 kV
- ²⁶Al measurement: 55 kV

- Gap between electrodes: 25 mm
- Maximum bias: 60 kV
- ¹⁰Be measurement: 49 kV

Gas Ionization Chamber

- Bias: 300 V
- Gas: Isobutane
- Window: Si₃N₄, 75 nm
- Window size: 10 mmΦ
- Length: ~430 mm
- Acquisition system: MPA, FASTCOM
- Gas pressure
 ¹⁴C measurement: 8.4 mbar
 ²⁶Al measurement: 7.7 mbar
 ¹⁰Be measurement: 7.2 mbar

A typical ¹⁰Be spectrum

Detector gas pressure: 7.2 mbar

Correction curve of ¹⁰Be/⁹Be ratio

The 7th International Workshop on Accelerator Operations (WAO-7), April 12 – 16, 2010, Daejeon, Korea

Results of standard and blank samples

Sample ID	Certified ¹⁰ Be/ ⁹ Be	Raw ¹⁰ Be/ ⁹ Be	Corrected ¹⁰ Be/ ⁹ Be	Error	Error (%)
blank	-	5.90 × 10 ⁻¹⁶	1.63 × 10 ⁻¹⁴	7.59 × 10 ⁻¹⁵	46.63
5-1	2.71 × 10 ⁻¹¹	1.56 × 10 ⁻¹²	2.71 × 10 ⁻¹¹	1.44 × 10 ⁻¹³	0.53
5-2	8.56 × 10 ⁻¹²	4.95 × 10 ⁻¹³	8.53 × 10 ⁻¹²	7.95 × 10 ⁻¹⁴	0.93
5-3	6.32 × 10 ⁻¹²	3.69 × 10 ⁻¹³	6.35 × 10 ⁻¹²	6.22 × 10 ⁻¹⁴	0.98
5-4	2.85 × 10 ⁻¹²	1.67 × 10 ⁻¹³	2.87 × 10 ⁻¹²	5.14 × 10 ⁻¹⁴	1.79
6-1	9.72 × 10 ⁻¹³	5.55 × 10 ⁻¹⁴	9.57 × 10 ⁻¹³	3.08 × 10 ⁻¹⁴	3.22
6-2	5.35 × 10 ⁻¹³	3.04 × 10 ⁻¹⁴	5.27 × 10 ⁻¹³	1.88 × 10 ⁻¹⁴	3.56

Reproducibility of ¹⁰Be measurement

Be-10 AMS Measurements

The 7th International Workshop on Accelerator Operations (WAO-7), April 12 – 16, 2010, Daejeon, Korea

Ion Beam Application Group

Unknown sample measurement of ¹⁰Be

Sample name	Raw ¹⁰ Be/ ⁹ Be (blank value subtracted)	± σ	¹⁰ Be/ ⁹ Be (counting efficiency corrected)	± σ
NR-1	3.773E-15	9.499E-16	1.386E-13	2.867E-14
NR-2	3.600E-15	8.087E-16	1.334E-13	2.441E-14
NR-3	4.364E-15	1.766E-15	1.564E-13	5.332E-14
NR-4	4.577E-15	1.518E-15	1.629E-13	4.581E-14
NR-5	9.238E-16	5.078E-16	5.261E-14	1.533E-14
NR-6	1.616E-15	6.463E-16	7.350E-14	1.951E-14
NR-7	6.868E-16	1.103E-15	4.546E-14	3.331E-14
NR-8	1.589E-14	8.391E-15	5.044E-13	2.533E-13
DLR-2	1.802E-14	9.491E-16	5.686E-13	2.865E-14
DLR-3	1.972E-14	1.018E-15	6.200E-13	3.073E-14
DLR-4	2.142E-14	8.939E-16	6.714E-13	2.698E-14
DLR-5	3.004E-14	1.501E-15	9.314E-13	4.530E-14

Summary

- A compact AMS system with 1 MV TV installed at KIGAM in 2007 (the second AMS machine in Korea) has dedicated to not only ¹⁴C measurement but also ¹⁰Be measurement
- Be measurement with a AMS with small TV is a challenge
- Key point of successful ¹⁰Be measurement is effective suppression of isobar, ¹⁰B.
- An absorber foil (Si₃N₄) with thickness of 150 nm was adopted to enhance the energy difference between Be and B isotopes.
- Large counting efficiency change due to using of a foil should be estimated and corrected
- With this effort, almost all kind of samples except for in-situ rock samples could be measured successfully.

