欧米 1. 於什る巨大電子線形加速器

高エネルギー物理学研究所 佐藤 勇

放射光施設の建設が始する直前の今年1月末から約スケ月间、スタンフォード電子線 形加速器を中心に欧米の大理電子線形加速器を調査する社会に恵まれましたので、各々の 研究所を訪问しに際の加速器に共通して話題や、それぞれの研究所で受けに印象的な見闻 や、大型電子線形加速器に特有な幾つかの問題炎、等を取り上げて記述して見たいを思い ます。

電子線形加速器は、サイクロトロン等の他の加速器より遅れて用発されなが、現在では 最も popular な加速器として、色々な分野で活やくしている。例えば、工業用電子線形 加速器(<10 MeV)では、主としてX線の発生装置として、数多く使用され、その数は 数千台に達して居る。電子線形加速器が、この様に、他の加速器をその数で圧倒している のは、(i)加速器の構造が非常に簡単である、(ii)イオン深が手軽に制作本来る、(ii) 投入 電力に対する本力ビーム電力が大きい、(iV)加速電界が大きいので手軽に数十HeVのエネ ルギーが得られる、等の理由に依ろものである。

在界中に散在する電子線形加速器を使用目的别に分類して見な。最近は、放射化学、結晶分光学、原子炉パルス動作、中性子発生深等に、非常に短かいピコ秒のパルス中のビームで、数イアンペアのビーム電流が使用される様になった。この種類の加速器をTable 1、に表示してある。 Table 2 には、原子核実験のために制作されな Conventional ほ低エネルギー電子線形加速器を列記した。この表は、電子線形加速器の失敗例と成功例との下 実的事実として列記してある。

Table 3は、原子核実験と素粒子実験のために制作されな、中エネルギーの電子線形加 連番を表はしなもので、このエネルギー領域にすると、Multi-SectionのBeam Blow いり対策を行った加速器と、そうですかっな加速器との间に、ビーム電流に大きな差が去 て来ている。

中エネルギーの電子線形加速器でも、high duty Cycle machine になると、加速器

-94-

の Parameter も大きく変って来る。例えば、現在建設中のIKOの machineは、ビームの pulse 中が 45 Msec, 繰り起し周波教が 2000 pps で、 duty cycleが 8% に設計を外、平均電流は 500 MA にも座している。

Table 1 : Selected list of recent electron linacs used for specialized applications

	<u> </u>	the second s		······································
Institution Manufacturer and Year of Installation	Application	Energy Length Number and Type of Sections Frequency Number and Type of Power Sources	Maximum Beam Duty Cycle Peak Current	Noteworthy ₽ eatures
Argonne National Laboratory Chicago,USA ARCO 1970	Radiation- chemistry Photoneutron physics	10-22 MeV 5.81 m 2 TW 2 klystrons 20 MW 1300.7 Mhz	1.5x 10 ⁻³ 2.5 A for 10µusec	Very short high curren -t pulses Very low attenuation lengh =0.11 Subharmonic bunching
BAM-Berlin, Germany Radiation Dynami -cs 1973	𝒦-activation -analysis Neutron-radio -graphy Radiation pro -tection	4-36 MeV 5.00 m 2 TW 1 klystron 20 MW 2856 Mhz	1.2x10 ⁻³ 450mA for 3.2µsec	Flexible repetition rate between 12.5 and 300 pps
Euratom,Geel. Belgium CGR/under construction	Neutron produ -ction for reactor resea -rch	100-150 MeV 15.0 m 1 SW, 2 TW 3 klystrons 13-18 MW 2998 Mhz	2.0×10 ⁻³ 220mA for 2µsec 9 A for 5 nsec	flexible repetition rate between 250 and 900 pps Very short high curren -t pulses
National Physica -1 Laboratory. Teddingston. GB Radiation Dynami -cs 1975	Radiation met -rology	10-22 MeV 2.00 m 2 TW 1 klystron 20 MW 2856 Mhz	0.7×10 ⁻³ 700mA for 3µsec 5 A for 5nsec	Flexible repetition rate (1-480 pps) Very short high curren -t pulses
RISO,Roskilde. Denmark Haimson Research Corp. 1976	Radiation res -earch	4.5-15 MeV 1.60 m 1 TW 1 klystron 20 MW 2856 Mhz	0.8×10 ⁻³ 1.5 A for 4µsec 1.5 A for 10nsec	Flexible repetition rate (1-200 pps) very short high curren -t pulses Very low attenuation =0.128 nepers Special H.v. tetrode with 250 KV between cathode and anode 5% spectrum for 1.1 A 80% conversion efficie -cy
Tokyo Univsity Tokai Japan Mitsubishi Denki Corp. 1977	Radiation chemistry Neutron produ -ctiOn for reactor resea -rch	25-38 MeV 4 m 2 TW 2 klystrons 10 MW 2856 Mhz	0.9×10 ⁻³ 230mA for 4.5µsec 2 A for l0nsec 70 A for single bunching	Flexible repetition rate (1-200 pps) Very short high curren -t pulses Subharmonic bunching

Table 2: Conventional low energy electron linacs for nuclear phy
--

Institution	Maximum Energy. Maximum Peak Current. Total Accelerating Length.	Beam pulse length. Pepetition rate. Beam duty Cycle. Number and Peak Power of klystrons.	Special features
Cetro Atomico Bariloche, Argentina	25 MeV 300 mA 3 m	1.2 μsec 200 pps_4 2.4 × 10 1 / 15 MW	
U. of Glasgow, UK	30 MeV 500 mA 3.5 m	3.5 µsec 240 pps 8.4 × 10 1 /25 MW	
RTI, Moscow, USSR	30 MeV 10 A 8 m	0.01 usec 2400 pps_5 2.5 × 10 1 / 30 MW	Nanosecond high current pulses
CBPF,Rio de Janeiro, Brazil	30 MeV 100 mA 10 m	3.3 µsec 360 pps 1.0 x 10 2 / ?	1 Amplitron, 1 Klystron
NRC, Ottawa, Canada	35 MeV 250 mA 8 m	3.2 µsec 180 pps_4 6 x 10 1 /20 MW	
IDF, Sao Paolo, Brazil	50 MeV 10 mA 6 m	1.0 µsec 120 pps 1.0×10 2 / 21 MW	
Harwell, UK	55 MeV 500 mA 20 m	2.0 µsec 200 pps_4 4 x 10 7 / 8 MW	
RTI, Moscow, USSR	60 MeV 1000 mA 20 m	5.5 μsec 50 pps 2.7 × 10 6 / 25 MW	Long high current pulses
IFK,Giessen, Germany	65 Mev 400 mA 8 m	2.0 µsec 250 pps 5.0 x 10 ⁻⁴ 1 / 30 MW	e+ source un der constructi -on
IFK, Darmstadt, Germany	70 eV 60 mA 6.6 m	5.0 μsec 150 pps 7.5×10 1 / 22 MW	Energy loss spectrometer
Yale University USA	70 MeV 750 mA 15 m	4.5 µsec 200 pps -4 9.0 × 10 5 / 10 MW	L-band,can generate short 10 A pulses
LVK,Gent, Gelgium	90 MeV 400 mA 6 m	3 μsec 300 pps_4 9×10 2 / 22 MW	BBU at 400 mA,3 usec e ⁺ source under construct -ion

Table 3: Conventional medium energy electron linacs for nuclear p	onvsice
---	---------

and the standard stan			
Institution	Maximum Energy Maximum Peak Current Total Accelerating Length	Beam pulsed length Repetition rate Beam duty cycle Number and Peak Power of Klystrons	Special features
NPGS, Monterey USA	110 MeV 25 mA 9 m	1 μsec 60 pps 6 × 10 3 / 20 MW	
U. of Glasgow UK	130 MeV 300 mA 18 m	3.5 µsec 240 pps 8.4 × 10 3 / 25 MW	BBU at 300 mA 3.5 $\mu \texttt{sec}$ E.C.S. under Construction
Harwell UK	136 MeV 1000 mA 24 cm	5 µsec 300 pps_3 1.5 \times 10 8 / 20 MW	LBnad
NBS,Washington USA	150 MeV 350 mA 30 m	5 μsec 360 pps 1.8 × 10 ⁻³ 12 / 5 MW	L-Band BBU at 200 mA; 5 µsec can generate short 5 A pulses
Oak Ridge USA	178 MeV 20 A 16.5 m	0.024 µsec 1000 pps 2.4 × 10 ⁻⁵ 4 / 30 MW	L-Bnad Nanosecond high current pulses
JAERI, Tokai Japan	190 MeV 350 mA 13 m	3 μsec 300 pp <u>s</u> 9 × 10 5 / 20 MW	
KhFTi, Kharkov USSR	280 MeV 15 mA 48 m	1.5 μ sec 50 pps 7.5 \times 10 ⁻⁵ 11 / 14 MW	
U. of Saskatchewan Canada	280 MeV 300 mA 20 m	1 μsec 360 pps 3.6 × 10 6 / 22 MW	Pulsed stretcher "EROS" proposed.
IKK, Mainz Germany	350 MeV 250 mA ∿40 m	4 μsec 150 pps_4 6 × 10 8 / 23 MW	E.C.S.
U. of Tohoku Sendai, Japan	380 MeV 120 mA 54 m	3 µsec 300 pps_4 9 × 10 5 / 20 MW	BBU at 35 mA 3 µsec, E.C.S.
HEPL, Stanford	1200 MeV 30 mA 93 m	1.3 µsec 120 pps 1.6 × 10 31 / 20 MW	No longer operable at maximum energy
KhFT1, Kharkov USSR	1500 MeV 25 mA 225 m	1.5 μsec 50 pps 7.5 × 10 51 / 14 MW	e ⁺ source in existence polarized electron source under construction. Overall improvement plan under consideration.

TADIE 4. Comparison of main parameters of medium energy night duty cycle	abl	ľa	ab	s]	1	e	2		4	:		Coi	npa	ri:	зon	of	main	parameters	of	medium	energy	high	duty	cycle	mach	lines
--	-----	----	----	----	---	---	---	--	---	---	--	-----	-----	-----	-----	----	------	------------	----	--------	--------	------	------	-------	------	-------

Institution	Maximum Energy Maximum Peak Current Energy Spectrum Accelerator length	Beam pulse length Repetition rate Beam duty Cycle Number and Peak Power of Klystrons	output emittance
SACLAY	600 MeV 42 mA 370 μ A (AV) $\frac{\Delta E}{E}$ = 0.1 % (5 mA) $\frac{E}{E}$ 170 m	20 µsec 3000 pps 1 % at 600 MeV 2 % at 420 MeV 15 / 4 MW	90 % of current within 0.01π (<u>MeV</u>)cm
MIT BATES	430 MeV 25 mA 250µ∂A (AV) <u>^AE</u> = 0.3 % (80 % of current) ~153 m	13 μsec 5000 pps 1.8 % at 430 MeV 5.6 % at 200 MeV 10 / 4 MW	90 % of current within 0.0006π (<u>MeV</u>)cm
IKO MEA (under construction)	500 MeV 20 mA 500 μ A (AV) $\frac{\Delta E}{E} = 0.3 \%$ (50 % of current) 180 m	45 μsec 2000 pps 2 % for 400∿500 MeV 4 % for 250∿400 MeV 8 % for 200∿250 MeV 12 / 4 MW	90 % of current within 0.006爪 (<mark>MeV</mark>)cm

次に、電子シンクロトロンの入射器として制作された、電子線形加速器を、Table 5 に列記した。電子線形加速器は、陽電子の発生と、その加速に非常に都合のよいので、陽 電子入射器として大型加速器が使用される様になって来な。その例として DEST の500 MeVの入射器がある。又、Table 6には、陽電子と電子との colliding beam 加速器の入 射器を、列記した。Table 7には、大型線形加速器の特性表を示めしてある。

大型加速器(二於竹3 共通話題は, (i) Beam blow up 対策, (ii) 艱練を必要としな い運転方法の確立, (ii) Start upの迅速化 (iv) 政障時に於什3 speedy な回復方法 等ごあった。 (ii)~(iv)は, 計算秩の駆使によって解決す3方何であり, Beam Blow upは ビーム集束系の強化で解決す3方何で進められていた。

SLACに於けるエネルギー増強の方法については、大変兴味深いものがあった。特に 40 MWの Klystromの風発いら製作までと、SLEDのためのCavityの製作を、洞研究所内の一貫した作業で行っていた。

最近は, Cavityを使りたTM120 mode of position monitor of 使用されて

Table 5: Conventional electron linacs for synchrotron injector

Machine and location	Energy Beam current Emittance.	Beam pulse length Repetition rate Number and Peak power of Klystrons	Construction Synchrotron energy (max.) pulse width Internal Beam Total Accelerator staff
U. of Tokyo INS Tanashi, Japan	15 MeV 200 mA 8 mm•mrad 2 m	1 μsec 21.5 pps 1 / 7 MW	1961 1.3 GeV 4 msec 4 \times 10 ¹¹ part/sec 14 person
Bonn 2.5 GeV Synchrotron Bonn Germany	25 MeV 250 mA 3 mm•mrad	1 µsec 50 pps	1967 2.5 GeV (300 mA) 1 msec ₁₂ 5 × 10 ² part/sec 19 person
NINA Daresbury UK	43 MeV 500 mA 3.2 mm•mrad	0.73 sec 53 pps	1966 5.2 GeV 3 msec 1.2 × 10 ¹³ part/sec 110 (inc. exp area)
DESY Hamburg Germany	500 MeV 200 mA (125 mA at 500MHz modulation) 2 π mm·mrad 5.0 m	3 μsec 50 pps constant G (2π/3) 12 / 24 MW	1964 7.5 GeV 3.1 msec 2.5 × 10 ¹³ part/sec 80
Cornell 12 GeV E.S. Ithaca, N.Y. USA	150 MeV 100 mA 0.16 mm•mrad	2.5 µsec 60 pps	1967 12.2 GeV 2 msec 6 × 10 45

Table 6: Performance characteristics of the present e[±] linac injectors for colliding beam facilities

Machine and location	Energy of e incident on e+ target e beam power incident on target while injecting	Target material Nanoamps of e ⁺ within ∆E/E ≅ 1 % per KW of incident e ⁻ beam	Energy of e ⁺ at output of linac
ADONE	80 MeV	copper	380 MeV
Frascati	<1 kW	9.4	
DESY-DORIS	320 MeV	tungsten	320 MeV
Hamburg	∿1 kW	15	
DCI	∿1 GeV	tungsten	1.2 GeV (max.)
Orsay	<1 kW	7.1	
SLAC-SPEAR Stanford	∿6 GeV <1 kW	tungsten- phenium 11 1	2.5 GeV (max.)
ALS	85 MeV	gold	∿500 MeV
Saclay	3 kW	13.4	

Table 7:	Performance	characteristics	of	the	recent	linacs	for	high	energy	physics

	Charles and the state of the st	and the second	
Name of Machine Institution Location	Maximum Energy Maximum Peak Current Type and Field mode Accelerating length	Beam pulse length Repetition rate Buty Factor Frequency Number and peak of Klystrons	Construction date Total Accelerator Staff
Mark III HEPL of Stanford Univ. Stanford USA	1.2 GeV 3.2 mA C.G. (2/3π) 31 × 3.0 m	1.3 sec 120 1.6 \times 10 ⁻⁴ 2856 MHz 31 / 20 MW	1964 Mark III in process of phasing out; Staff and operating budget minimal
Orsay E.L.A. Accelerateur Linéaire Orsay France	2.3 GeV 100 mA Tapered (π/2) (1+38) × 6 m	1.5 sec 50 8 × 10 ⁻⁵ 2999 MHz 39 / 20∿25 MW	1959 energy increase (1969) 50 person
SLAC Stanford USA	29.5 GeV by SLED at March 1978 22.3 GeV 80 mA C.G. (2/3π) 960 × 3.05 m	1.6 µsec 360 6 × 10 ⁻⁴ 2856 MHs 244 / 21∿38.5 MW	1962 1093 person

位置の精度は10μmの分解能がまる様になった。これによって、加速管の中心を、ビームが正確に通す事が可能になり、特に大型線形加速器のBBU対策に福音をもにらすであろうと思われる。 又、CERNでは、このMoniter ZAmti protromのBeam coolingの下のの減速空胴(横方向の軍動量)と検去器に用りようとしている。