STABILIZATION OF THE ALVAREZ LINAC BY POST COUPLRES

Shinji MACHIDA,^{*}Takao KATO, Sadayoshi FUKUMOTO

Department of Physiscs, University of Tokyo National laboratory for High Energy Physics

Abstract

The model tank of the 40MeV Alvarez linac is designed and constructed. For the stabilization of its RF field, post couplers are inserted in this tank. As a result of low power measurements, some characteristics of post couplers are obtained and the efficacy of them is demonstrated.

1. モデルタンクの設計と特性

ポストカプラーによる、フィールドのスタビライズの効果を確かめる目的で、モデルタンクを製作した。径の大きさを実際の1/2として、周波数を2倍の400MHzにとり、長さは15cellとする。タンクのパラメーターを、Table 1 に示す。

(MHz)

Frequency

(MHz)

requency

(MHz)

requency

Tab	le 1 Main parame	ters of the model ta	nk
Energ	y 20.6	0 - 28.78 MeV	
Frequ	ency 401.	5 MHz	
Beta	0.20	62 - 0.2421	
Tank			
	Length	2.51 m	
	Inside diameter	0.45 m	
Numbe	r of cells 15		
Drift	tube		
	Outer diameter	8.0 cm	
	Bore diameter	1.5 cm	

はじめに、タンクの円筒導波管としての特性を、ドリフトチューブ を入れないで測定した。このときのモード図を、 Fig. 1に示す。共 振周波数の最も低いTE111モードについて、計算値と測定値はよく一 致している。

っぎに、ドリフトチューブを付けたときのモード図がFig. 2であり、 加速モードであるTM010モードの共振周波数は401.67MHz(空気中)で、 SUPERFISHによる値からのずれは、507kHz低い。SUPERFISHによる計算 は、メッシュサイズの取り方により変わるものであり、この変化の割 合をグラフにしたものがFig. 3である。モデルタンクの設計ではA点 のサイズを使ったが、サイズを無限小に延長したB点での値との差は、 周波数で約400kHzとなり、この分さらに計算値と測定値は一致する方 向である。

Q値は、ドリフトチューブを入れないタンクでのTE111モードで、 22600 (計算値の約60%),入れたあとでのTM010モードで、13000 (計 算値の約40%)となっている。

2. 電場測定、ビーズパータベイション法

タンクのスタビライズは、一つの結果として電場分布に現れる。電場分布を測る方法として、ここでは最も一般 的なビーズパータベイション法を用いた。ビーズパータベイション法の原理は、金属球または誘電体球を入れた場 所で、電場が乱れる効果を共振周波数の変化として検出し、その変化の大きさから電場の強さを (1)式により見 積もる。

 $\Delta f/f = -3 \varepsilon_0 E^2 v/4U \qquad (1)$

この測定により得られた電場分布の例 として、cell一つ分のデーターをFig. 4に示す。

図にみられるように、一定の周波数 のノイズがのっており、さらにフーリ エ変換すると、Fig.5に示すように約

fig.4 Field distribution in one cell

fig.5 After fourier translation

25Hzの周波数成分をもっていることがわかる。このノイズ源は、タンクの機械的な共振であろうと考えている。また、この測定系の時間変化は約0.5Hz/secで、この程度のドリフトは避けられないものとすると、今回の測定時間、 約8秒のあいだで精度は

 $\Delta f = 250 \pm 1 \text{ Hz}$

となる。

以上のような、ノイズ、ドリフトを抑えるために、おもにソフトウェアによる平滑化を行う。ハードウェアのブロックダイアグラムは、Fig.6に示す。

3. ポストカプラーによるスタビライズの原理

現在あるKEKの20MeVタンクでは、RFのTwo Feedによるスタビライズを 行っている。これは、タンクの長さ方向、約1/4と3/4の場所からRFをフィ ードして、基本周波数より一つ上のモードが立ちにくいシステムになっ ている。今回のポストカプラーによるスタビライズでは、基本モードに 対してポストモード(いわゆるカップリングモード)を合流させる。こ れによりモード図上で、本来傾きを持たない基本モードのカーブに傾き を持たせ、基本周波数と一つ上のモード間のモードスペースが、大きく なるようにする。このように、higherモードが励起されにくくすること が、タンクがスタビライズされる一つの条件である。

また、ポストカプラーによるスタビライズのもう一つの利点は、基本 モードが傾きを持つことによって、RFの群速度が零でなくなり、タンク 内でエネルギーの流れが起こることである。これにより各cell間でほぼ フラットなフィールド分布が得られる。

4. パータベイションに対するポストカブラーの効果

端板の位置を前後にずらし、両端のcellに意図的にパータベイションをあたえたタンクを、ポストカブラーによっ てスタビライズした。測定量として、モード図、周波数、電場分布の3つの変化を測った。 4-1 モード図

ポストカブラーを、タンクに入れる長さを変数にしたときのモード図は、Fig. 7 のようになった。ポストカブラー を入れることにより、ポストモード(いわゆるカップリングモード) 周波数は下がる。ポストカブラーを13.5cmい れたところで、基本モードとポストモードのカップリングが起こり、モードスペースが大きくなっていることがわ

かる。12.5cmのところでさらにモードスペースが大きいが、この状態ではあとで電場分布の結果が示すように、フィ ールドのディストーションが起こっている。

4-2 共振周波数

共振周波数を示したのが、Fig.8 である。端板によるパータベイションのあたえ方により、共振周波数の変化は 個々に異なるが、どれも12.5cmに一つのクリティカルポイントを持ち、その前後で大きく変化する。 4-3 電場分布

ポストカプラーにより、電場分布がいかに改善されるかを、Fig.9に示す。ここでは、電場分布が改善されフラットになることを示すパラメーターとして、Ungrin, et al.(Ref.2)が定義したように

 $Dx = \Sigma | \overline{F} - F_i |$

をとる。これを使ってDxの変化をみたものが、Fig.10である。この図から明らかに、12.5cmのフィールドディス トーション、および13.5cmのスタビライズが読みとれる。

5. ポストカプラー先端のタブの角度、および大きさによるスタビライズの効果

ポストカプラーの先端には、Fig.11に示すようにタブをつけ てある。このタブは、元来各cell間の対称性を破ることにより、 フィールド分布に傾きをもたせるものであるが、その効果、お よびタブの大きさを変えたときのスタビライズの効果を調べた。

Fig.12がタブをすべて一方向に向けたときのフィールド分布 であり、タブを向けた方に減少している。

タブの大きさに関しては、ドリフトチューブとのキャパシタ ンスから、大きなものほどポストカブラーを入れる長さが短い 所でスタビライズする。

References

E.A.Knapp, B.C.Knapp, and J.M.Potter, Rev. Sci. Instr. 39, 652 (1968)
J.Ungrin, S.O.Schriber, and R.A.Vokes, IEEE Trans. Nucl. Sci. NS-30, No.4, 3013 (1983)

fig.11 left: post coupler and small tab right: drift tube and slimmer stems

fig.13 Inside tank with post couplers

fig.14 Dimensions of the tank