Multi Mode Effect on Electron Trapping in FEL

Shin-ichiro KURUMA and Kunioki MIMA^A Institute for Laser Technology Institute of Laser Engineering, Osaka University^A

In the Free Electron Laser(FEL), a bunched electron beam is decelerated by the ponderomotive potential that is the beat wave of a wiggler magnetic field and an excited wave. In this report, the relation of electron trapping to the excited wave guide modes is investigated. The case of a single mode excitation is compared with the case of multi mode excitation by the three dimensional simulations. In the case of multi mode excitation, the electron distribution in ponderomotive potential spreads, so the conversion efficiency is not enhanced significantly.

自由電子レーザーに於ける電子のトラッピングに対するマルチモードの効果

1.はじめに

導波管型FELに於いて、電子ビームから電磁波へのエネルギー変換効率を改善する為の手段 として、ウィグラー磁場の強度を距離と共に弱めることにより共鳴条件を維持するテーパードウ ィグラーがある。本研究の目的は励起電磁波がシングルモードの場合とマルチモードの場合にボ ンデラモーティブボテンシャルにトラップされるバンチした電子ビームの振る舞いを明らかにす ると共にテーパードウィグラー場の効果との関係を調べることである。三次元数値解析コードを 用いた計算により各位置の位相空間での電子ビームのエネルギー分布を調べた。また、主励起モ ードであるTE11モードの振幅の空間発展並びに電子ビームの全エネルギー及び縦方向の平均エネ ルギーの空間発展を調べた。2では、数値計算の為の初期パラメーターの設定の仕方について述 べる。3では、数値計算の結果を示し、それに対する検討を行なう。

2. 数値計算パラメーターの決定

数値計算のパラメーターとしては大阪大学レーザー核融合研究センターで行われているInduct ion Linac FEL の実験に近いものを選んだ。ウィグラービッチ入w=6cm,ビームエネルギーEb=6Me V(ro =13), ビーム電流Ib=2KA, ビーム半径rb=3mm, 導波管半径rc=1cmであり、放射光の波長は 入s=500 μ m とした。 この時、ウィグラー磁場強度は、共鳴条件並びに安定軌道の条件から決 定される。

 $\omega^{2} = (k_{2}^{2} + k_{\perp}^{2}) c^{2} + \omega_{p}^{2} / \gamma o$ $\omega = (k_{2} + k_{W}) v_{2} - \omega_{p} / \gamma_{2} \sqrt{\gamma o}$ $v_{\perp} / c = -K / \gamma o$ $\gamma o^{-2} = 1 - v_{\perp}^{2} / c^{2} - v_{2}^{2} / c^{2}$

これらの式より

$$K = \{ \gamma_{0}^{2} - (\frac{\gamma_{0}\overline{\omega}}{1 + \overline{\omega}\sqrt{1 - (\beta_{nm}/\overline{r_{c}}\,\overline{\omega})^{2}}})^{2} - 1 \}^{\frac{1}{2}}$$

但し、K=eBw/kwmc, $\bar{r}c$ =kwrc, $\bar{\omega}$ = ω /kwc, β nmはベッセル関数の零点でここでは励起モードをTE 11とした。また簡単化の為ビームプラズマ周波数 $\omega p/\gamma_2 \sqrt{\gamma}$ のは小さいとして無視した。(こ れは数値計算で静電波を解かないこと、即ちコンプトン領域を仮定することとコンシステントで ある。上記のパラメーターでは $\omega p/\gamma_2 \sqrt{\gamma}$ の ≒0.07<1 である。) 以上より、Bw=2.36KG と 決定される。

3. 数値計算結果と検討

図1は、(a) シングルモード励起の場合(TE11,TM11) とマルチモード励起の場合(TE1n,TM1n,n =1,2,3) のTE11モードの振幅の空間発展を示している。但し入射電磁波強度は、Pi=800W/mode(図のAE=-5, Filling Factor=0.25に対応)とし、またz/入w=20の位置よりz/入w=30にかけてウィ グラー磁場強度に40% のテーパーをかけた。これを見るとマルチモード励起の場合は、波の振幅 が2/入w=16で飽和した後成長しないのに対して、シングルモード励起の方は2/入w=20を過ぎても テーパードウィグラーの効果によって波の増幅が起こっているのが解る。図2は、電子ビームの 全エネルギーアo 及び縦方向の平均エネルギーア2 の空間発展を示している。これを見ると全エ ネルギーアo が減っているにもかかわらず縦方向エネルギーア2 が増えている。従って全エネル ギーアo の減少は横方向エネルギーア₁ の減少によるものであることが解る。図3は、2/入w=26 での電子ビームの位相空間内のエネルギー分布であり、(a) はシングルモード励起の場合、(b) はマルチモード励起の場合である。これを見ると、シングルモード励起の場合にはバンチした電 子ビームはポンデラモーティブポテンシャルの減速相にトラップされているが、マルチモード励 起の場合にはポンデラモーティブポテンシャル内にトラップされた電子ビームのエネルギー分布 が広がっているのが解る。従ってマルチモード励起の場合にはテーパードウィグラーを用いても 変換効率の改善は望めないことが解る。

図1. TE11モードの振幅の空間発展(AE=log(eAs/mc), Asはベクトルボテンシャル)

(b) マルチモード励起の場合

図3. 位相空間に於ける電子ビームのエネルギー分布 (z/λ w=26, ψ= ∫(kz+kw-ω/vz)dz)