High Gradient Experiment and Beam Acceleration by the ATF-Phase-I Linac

Seishi Takeda, Mitsuo Akemoto, Hitoshi Hayano, Hiroshi Matsumoto, Takashi Naito and JLC Study Group

> National Laboratory for High Energy Physics Oho 1-1, Tsukuba, Ibaraki 305, Japan

Abstract

High gradient experiment has been carried out with a traveling structure of ATF Phase-I Linac. The dark current is multiplied along the structure, and the multiplication factor at 70 MeV/m is estimated to be 1.63 per cell for the present structure. The field enhancement factor β near the input coupler and inside the output coupler is evaluated to be 39 and 66 respectively. The electron beam has been accelerated at the gradient of 85 MeV/m.

はじめに

リニアコライダー(電子・陽電子衝突型線形加 速器)は対向した2台の主リニアックから構成され ており、電子と陽電子のバンチを直線上で加速し、 それぞれ正面衝突させるために放射光損失がなく、 原理的にはエネルギーの限度はない。重心系1TeV のリニアコライダーを全長14km以内で建設する には、加速管内で従来より1桁高い100 MeV/m 以 上の加速電界を発生させねばならない。このような 高電界では、RF Breakdown と Dark Current が無視 できず、高電界達成にはこれらの基礎的研究を推進 する必要がある。

高加速勾配での RF Breakdown に関する実験は、 SLAC、Varian が単独または共同1)でおこなった Sband、C-band、X-band の各周波数領域での報告が ある。これらの実験は、小出力のRF源(1 MW~ 数10 MW)で高い加速電界を作りだすために、Half-Cavityや、1 Cell + 1 Coupler の πモード定在波型加 速管、並びに 6 Cell + 1 Coupler の 2π/3モード定在 波型加速管を用いている。これらの一連の実験から、 Kilpatrick Breakdown Limit を上廻わる Peak Surface Field が得られること、また Breakdown Limit が周 波数の平方根にほぼ比例することなどが明らかにな った。 しかし、RF Breakdown や Dark Current が、加 速管の全長すなわち Cell 数に大きく依存するもの と予想され、そのためにも、実機に使用される長さ の Traveling Wave 型加速管で起きるこれらの問題 を解明する必要がある。しかし、そのためには、S-バンドでは 100 ~ 200 MWの RF 源が必要となる。 JLC Study Groupは、以前 PF入射器のリゾンナント リングを利用して 104 MWのピーク出力を作り、電 鋳方式で製作した 3 Cell + 2 Coupler の Travelingwave 型加速管で、103 MeV/m の高加速勾配を達成 している。今回は、JLC の R&D 用に試作した ATF Phase-I リニアックの RF 源(最大 200 MW、1 µs)を 用いて、17 Cell + 2 Coupler の S-band 加速管の高電 界実験をおこなった。

I. High Gradient 実験装置(図1参照)

a) RF 源

日光に建設された、クライストロン変調器は合 計4台で、そのうち1台は、現在30 MW X-bandク ライストロン XB-50K の試験に用いられており、も う1台はリゾナントリングや、大出力 RF コンポー ネントの開発に利用されている。残りの2台はATF SLAC で SLC用に開発した5045 S-バンド・クライ ストロンと、東芝製 E3712 S-バンド・クライスト ロンにそれぞれ接続されており、2台のクライスト ロンの RF 出力は 3dB カップラーで合成され、パル ス幅 1µs で、最大 200 MWのピーク出力が発生でき る。これを真空導波管で、17 Cell + 2 Coupler のロ ウ付け製 S-band 加速管に入力する。

b) インターロック系

クライストロンRF 窓付近、加速管入力並びに 出力 Coupler付近の導波管内の真空、並びに加速管 前後のビームダクト内の真空は、CCG真空計によっ てモニターされており、制御用 VAX コンピュータ ーに CAMAC経由で接続されている。インターロッ ク系として、上記の真空計、クライストロン窓への 反射ピークRF レベル、冷却水系、クライストロン ダイオード保護の各インターロックが、変調器自身 のインターロックに加えられており、異常時は電源 同期の 50 pps で運転されているクライストロン変 調器を停止することができる。真空系インターロッ クレベルは、通常 3 ~ 4×10⁻⁷ Torr に設定してい る。

c) Auto Processing System

加速管に RF を入力して RF Processing をする 際、Computer-Auto-Processing System が用いられた。 VAXコンピューターは、設定された真空アナログ レベル(通常は 6×10-8~1×10-7 Torr)以上に圧力 が上昇しないよう、クライストロンの RF 入力レベ ルを調整して RF 出力パワーを制御する。このよう な制御方式で、加速管への RF パワーは、 Processing が進むにつれ、設定した最大出力まで自 動的に上昇していく。真空がインターロックレベル を超えるような RF Breakdown が発生したときは、 クライストロン変調器が停止し、真空の圧力レベル が設定値以下(通常は 6×10-8 Torr)に回復すると、 加速管への RF 入力が低いレベルから再び開始され る。この System には 任意の RF レベルを保持する Hold-Mode Routine を有し、上記の真空の圧力レベ ル以下であるなら、Terminal の Key Board から設 定した RF レベルを長時間にわたって保持できる。

2. 加速管周辺の測定装置

Dark Current を計測するために、加速管の上流 と下流にそれぞれ、パルス波形測定用ビーム電流モ ニター、電荷量測定用ファラデーカップが設けられ ている。加速管の下流には、Dark Current のプロフ ァイル測定用として、Cr-doped SiO2を用いたビー ムプロファイルモニターが設けられており、リアル タイム画像処理装置に接続されている。Dark Current のエネルギー分布は、分析用電磁石により コンピューター制御で自動的計測される。さらに、 10個の小型プラスチック・シンチレーターが加速管 外壁に沿って貼り付けられており、加速管内で発生 した RF Breakdown による X-ray Burst の波形がリ アルタイムで測定できる。すでに報告2)したように、 RF パルスのFront が加速管出力 Coupler を通過する 時点で、 Burst 状の Dark Current が電流モニターで 計測され、また同時に X-ray Burst が Output Coupler 付近で測定された。またエネルギー分布の 測定で、このBurst 状のDark Current が 1 Cell 分の 加速エネルギーに相当する低エネルギーにピークを 有することから、出力 Couplerにおける Multi Pactor に起因する、使用加速管固有の現象であると考えた。

3. High Gradient 実験

a) Dark Current の加速管長依存性

今回行った High Gradient 実験の目的は、Dark Current の加速管長依存性を明らかにすることであ る。もし、加速管が、電子増倍管のようにDark Current の増倍をする働きをするなら、Dark Current は加速管長に比例せず、指数関数的に増加するであ ろう。これを明らかにするには、長さが異なり、同 一特性を有する数多くの加速管を準備しなければな らない。ここでは、模擬実験として、加速管に磁場 を横方向にかける方法を採用した。磁場をかけると、 磁場上流部で発生した Field Emitted Electrons は軌 道を曲られるため、加速管出口での Dark Current が減少することが予想される。加速管の磁場下流部 を加速管実行長として、70 MeV/m の加速電界時の Dark Current をプロットしたのが第2 図である。出 力Couplerで発生した Dark Current を除くため、 Dark Current は測定したエネルギー分布から低エネ ルギー成分を除去し、積分して得られた値を使用し た。図1から明らかなように、Dark Current は加速 管実効長に指数関数的に増加している。そして、こ の実験に用いた加速管の場合、70 MeV/mにおける 1 Cell 当たりの増倍率は、全長にわたってほぼ一定 で、1.63倍であった。

b) Energy 分布から求めた Field Enhancement factor β

従来は、加速管出口で測定されるDark Current と加速管内の Surface Field から、Fowler-Nordheim プロット図を作成し、その勾配から Field Enhancement Factor B を求めてきた。長い加速管の 場合、加速管出口で測定される Dark Current は、 増倍効果の影響を受けて、Fowler-Nordheim プロッ トから得られるβは、主に加速管入口付近の Field Emitted Electron に関するβ値を反映しているもの と考えられる。第3図は、加速電界 33 MeV/m~92 MeV/mにおける Dark Current のエネルギー分布で ある。低エネルギー成分も含めた全電子数と、低エ ネルギー成分を除いた電子数についての Fowler-Nordheim プロットを図4に示す。β値は、全電子数 でプロットした場合は66となり、これはファラデ ーカップで測定した値と一致する。低エネルギー成 分を除去、すなわち出力 Coupler 内で発生した Dark Current を除いた電子についての B 値は39と求 められた。以上のことから、出力 Coupler では、RF Breakdown が生じるため、Bが改善されないが、加 速管上流付近は β 値が 39 程度まで RF Processing が進んでいるものと考えられる。

c) 最大到達加速電界

実験に使用した加速管については、設定した真 空系のインターロックの条件を保持しながらおこな った RF Processing で、現在 93 MeV/m の加速勾配 に到達している。

3) 85 MeV/m におけるビーム加速試験

最大 85 MeV/m におけるビームの加速試験をお こなった。詳細は講演にゆずる。

おわりに

Cell 数が多く実機に近い長さの Traveling Wave型加速管を用いた High Gradient の実験は緒に ついたばかりである。High Gradient における現象 は複雑で、多くのパラメータに依存すると予測され る。多くのことを知るには、系統的な実験を数多く こなすことが必要で、そのためにも数多くの異なっ た特性の加速管についての実験を進めていかなけれ ばならない。そのために、同一 Geometryではある が、β値を高める有機物の付着を低減した加速管や、 その他の加速管をすでに準備している。

参考文献

- 1) G.A.Loew and J.W.Wang, Proc. XIIIth International Symposium on Discharges and Electrical Insulation in Vacuum.
- 2) H.Matsumoto et. al., Particle Accelerators, Vol.26 (1990) 231/1189.

第1図. 70 MeV/m の加速電界時の Dark Current の加速管長依存性。

第2図. 加速電界 33 MeV/m~92 MeV/mにおける Dark Current のエネルギー分布。

Fowler-Nordheim Plots for S-band Structure

第3図. 低エネルギー成分も含めた全電子数と、低エネルギ 一成分を除いた電子数についての Fowler-Nordheim プロット。