The Design Study of Bunch Compressors for the JLC and the ATF

Mitsuo Kikuchi and Junji Urakawa

KEK, National Laboratory for High Energy Physics 1-1 Oho, Tsukuba, Ibaraki-ken, 305 Japan

ABSTRACT

The JLC linear collider and the ATF facility are envisaged to be constructed in near future and in very near future[1]. In these plans, the extracted beam from the dumping ring[2] has a bunch length of 5mm and a relative momentum spread of 0.08%. In the JLC, it is necessary to shrink the bunch length to 60μ m in order to obtain high luminosity with extremely low-beta optics and also to reduce an adverse effect of single bunch transverse wake field in the X-band cavities. The ATF also requires a bunch-length compressor in order to provide the Final Focus System and the X-band cavity test-stand with beams which have a momentum spread of 0.13% to 1.0%. The bunch compressors for the JLC and the ATF were designed fulfilling the requirements mentioned above. The emittance growth due to radiation excitation and chromatic effects was taken into account. The misalignment tolerance was partly analyzed and is estimated to be several microns.

JLC 及び ATF のバンチコンプレッサーの設計

1. はじめに

JLC 計画ではエネルギー 500 G e Vで衝突点のビームサイズは水平方向 (x)0.2µm, 垂直方向 (y)2nm と されている [1] 。ダンピングリングから取り出されたビームのエミッタンスは $\varepsilon_{xn} = 3 \times 10^{-6} m$, $\varepsilon_{yn} = 3 \times 10^{-8} m$, バンチ長は 5mm, エネルギー幅 0.08% である。また衝突点のベータ関数は $\beta_x^* = 14mm$, $\beta_y^* = 80\mu$ m と極端に絞られる。横方向にビームを収束させたときに有効にルミノシティを得るためには $\sigma_z \leq \min(\beta_x, \beta_y)$ が必要で (σ_z はバンチ長)、上に述べた JLC のパラメータから、 $\sigma_z \simeq 60\mu m$ が要求 される。これは横方向の単バンチ wake 場の影響を軽減するためにも必要である。また、ATF において は JLC の研究開発のためにダンピングリング、最終収束系 (FFS)、X-バンドキャビティのテストが行 なわれる予定である。後者のためには RF 位相で少なくとも 20 度以下 (σ_z =1.5mm)、前者のためには FFS の運動量幅のテスト (0.13%から 1.0%)のためこれに見合ったバンチ長 (σ_z =3.4mm~0.4mm) が必要である。

2. JLC 用バンチコンプレッサー (JLC-BC)

図-1 に JLC-BC の概念的なスケッチ(ただし全体の半分のみ)を示す。BC の原理は図-2 に示すよう にエネルギーの違いによる軌道長の差、及び RF によるバンチ内の位置に依存した加速(減速)による 位相空間での回転である。バンチ長の圧縮比は 60µm/5mm≃1/80 と大きいので 2 段階に分けて行なわ れる (BC1, BC2)。BC1 で約 1/12.5 に圧縮(エネルギー幅は 1%に増加する)した後加速し相対エ ネルギー幅を 0.3%にし再び BC2 で 1/7 に圧縮し 60µm のバンチ長を得る。このときエネルギー幅は 2%に達する。次に設計の要点について述べる。

BC の光学系の設計の際注意すべきことはエミッタンスが非常に小さく、クロマティックな効果に よるエミッタンス増加を抑えることが JLC の絶対条件となることである。BC に要求される条件は次の ようになる。(1)X-バンドライナック(主ライナック)の入口で許される最大エネルギー幅は約2%、(2) 運転およびライナックの増設を容易ならしめるためダンピングリングは衝突点付近におかれる。従って ビームは主ライナックに沿って輸送され 180 度曲げられて入射される。(3) 高エネルギーでは曲線部で の放射励起によるエミッタンス増加が無視できない、これは γ^5/ρ に比例する。(4)BC1 の後の S-バン ドキャビティでは横方向 wake による不安定性を避けるため少なくとも ~0.4mm 以下でなければなら ない。(5) 光学系の運動量依存性からくる有効エミッタンス増加を避けるためエネルギー幅は、ライン の長さにもよるが、1% 以下であることが望ましい。

まず (4)(5) から BC1 の圧縮率を 1/12.5 と決めた。そうすると (1) から主ライナックの入射エネ ルギーは 5.5GeV 以上と決まる。一方 (3) からエネルギーはできるだけ小さい方が良い (さもなくば軌 道半径を大きくとることになるがこれはコスト高につながる)。以上から BC2 のエネルギーは 5.5GeV に選んだ。表-1 に JLC 用バンチコンプレッサーのパラメータを示す。BC1 はエネルギーが低く放射励 起を考慮する必要がないので BC2 に比べ簡単であるので以下 BC2 の設計についてのみ述べる。

Arc-1 RF キャビティ以前の曲線部 (Arc-1) ではエネルギー幅は約0.3%と小さくクロマティックな効 果は小さい。Arc-1 の設計では (a) RF キャビティにおけるバンチ長は RF の sin 波に起因する非線形性 を小さくするため位相にして 20 度 (1.5mm)以下, (b)放射励起によるエミッタンス増加は 5%以下, (c)単位セルは FODO とする, (d)偏向磁石の強さ 1.3T以下, (e) 4 極磁石の強さ 90T/m以下, とい う条件からパラメータを決めた。表-2 に Arc-1 のパラメータを示す。

<u>Arc-2</u> RF キャビティ後の曲線部ではエネルギー幅が 2%と大きいので second-order achromat[3] の概 念を採用し6 極磁石による補正を行なった。

<u>性能評価</u>トラッキングの手法を用いて性能評価を行なった。1000 個の粒子をバンチ内に分布させト ラッキングを行ない 10 回の平均をとった。結果はバンチ長は $\sigma_z = 66.3 \pm 2.2 \mu m$, エミッタンス増加 は $\varepsilon_x^{out}/\varepsilon_x^{in} = 1.06 \pm 0.03$, $\varepsilon_y^{out}/\varepsilon_y^{in} = 1.00 \pm 0.04$ であった。misalignment の許容値をみるため各磁 石にランダムな偏位を与えエミッタンス増加が2倍になる偏位量を求めた。結果は水平方向の4 極磁 石のずれについては 30~300 \mu m, 垂直方向については 3~30 \mu m であった。また4 極磁石回転について は 0.1~1.0mrad であった。これらは軌道補正をしていればより小さくなると推測される。

2. TAF 用バンチコンプレッサー (TAF-BC)

場所的な制約のためダンピングリングの曲線部に沿った輸送路を BC に利用している。TAF-BC の特徴は各種のテストのためにバンチ長の可変範囲が広いことである。セルの位相進行を 45 度から 135 度まで変えることによってバンチ長の可変範囲は 0.4mm から 3.4mm (エネルギー幅 0.13%から 1%) になっている。必要な RF (S-バンド) 電圧は 4.7MV から 48MV である。クロマティシティ補正のため

に曲線部のセルには6極磁石が配置されている。

References

[1] 竹田誠之, JLC Study Group [JLC 計画と ATF 計画]本研究会

[2] 浦川順治, 黒田茂, [ATF のダンピングリングの設計]本研究会

[3] K.L.Brown, A Second Order Magnetic Optical Achromat SLAC-PUB-2257 (1979)

表-1 Parameter of Bunch Compressors for JLC 表-2 Parameters of Arc-1 of Second Compressor

Energy (GeV) 1.5400 *Total bend_angle (deg) 340.000 compression factor 0.0800 *emittance_0 (rad.m) 2.7873D-1 bunch length (in/out) (mm) 0.4240 *emittance_growth (%) 5.000 deltaE/E (in/out) (%) 5.3000 / 1.0000 *phase_advance_x (deg) 90.000 dilation factor of Arc_1 (m) 0.0800 / 0.0 *phase_advance_y (deg) 90.000 dilation factor of Arc_2 (m) 0.5282 & strength (kf/kd) (m^(-2)) 4.9057 / 4.8965			*Enerav	(GeV) 5.300	10
compression factor 0.0800 *emittance_0 (rad.m) 2.7873D-1 bunch length (in/out) (mm) 0.4240 *emittance_growth % 5.000 deltaE/E (in/out) (%) 5.3000 / 1.0000 *phase_advance_x (deg) 90.000 dilation factor of Arc_1 (m) 0.0800 / 0.0 *phase_advance_y (deg) 90.000 dilation factor of Arc_2 (m) 0.5282 & strength (kf/kd) (m^(-2)) 4.9057 / 4.8965	Energy	V) 1 54	*Total bend angle	(deg) 340.000) Ó (
bunch length (in/out) (mm) 0.4240 *emittance_growth (%) 5.000 deltaE/E (in/out) (%) 5.3000 / 1.0000 *phase_advance_x (deg) 90.000 dilation factor of Arc_1 (m) 0.0800 / 0.0 *phase_advance_y (deg) 90.000 dilation factor of Arc_2 (m) 0.5287 4 strength (kf/kd) (m^(-2)) 4.9057 / 4.896	compression factor	0.09	*emittance 0	(rad.m) 2.7873D-1	0
deltaE/E (in/out) (%) 5.3000 / 1.0000 *phase_advance_x (deg) 90.000 dilation factor of Arc_1 (m) 0.0800 / 0.0 *phase_advance_y (deg) 90.000 dilation factor of Arc_2 (m) 0.5202 0.strength (kf/kd) (m^(-2)) 4.9057 / 4.896	bunch length (in/out)) 0.00	*emittance growth	(%) 5.000	00
dilation factor of Arc_1 (m) 0.0800 / 0.0 *phase_advance_v (deg) 90.000 dilation factor of Arc 2 (m) 0.5202 Q strength (kf/kd) (m^(-2)) 4.9057 / 4.896	deltaE/E (in/out)	5 3000 / 1 00	*phase advance x	(deg) 90.000	00
dilation factor of Arc 2 (m) 0 5202 Q strength (kf/kd) (m ⁽⁻²⁾) 4.9057 / 4.896	dilation factor of Arc 1		*phase advance v	(deg) 90.000)Ő
	dilation factor of Arc 2	0.0000 / 0.0	Q strength (kf/kd)	(m^(-2)) 4.9057 / 4.896	3
rf frequency (GHz) 2.5763 *@ field (T/m) 90.000	rf frequency	U.52	*Q field	(T/m) 90.000	0
(m_{12}) ((m_{12}) ((m_{12}) ((m_{12}) ((m_{12})) ((m_{12})	rf voltage	2.85	Glength	(m) 0.286	5
rf phase at sign (HV) 48.38/5 Bend angle/magnet (deg) 2.327	rf nhace at eigz	48.38	Bend angle/magnet	(deq) 2.327	1
$ \begin{array}{c} \text{(a)} \\ \text{(b)} \\ \text{(b)} \\ \text{(c)} \\ (c$	voltage decrement of eler	gree/ 18.17	B field	(T) 1.307	0
1.6690 Blength (m) 0.570	vottage decrement at Sigz	1.66	Blength	(m) 0.570	11
*Free space (m) 0.500	==== Second Comproseon		*Free space	(m) 0.500	0
Energy cell length (m) 2.213	Energy		cell length	(m) 2.213	52
(GeV) 5.5000 beta x (m) 3.655	chergy	5.50	beta x	(m) 3.655	7
0.1415 beta y (m) 0.667	bunch longth (in (out)	0.14	beta v	(m) 0.667	'8
build tength (1n/out) (mm) 0.0600 dispersion x (m) 0.120	delter(F (in/out)	0.06	dispersion x	(m) 0.120	6
deltar/e (in/out) (%) 0.4240 / 1.9787 *dilation factor (m) 5.0000D-0	deltaE/E (in/out)	0.4240 / 1.97	*dilation factor	(m) 5.0000D-0	1
dilation factor of Arc_1 (m) 0.2800 / 0.5000 No. of cell 73.050	dilation factor of Arc_1	0.2800 / 0.50	No. of cell	73.050	9
dilation factor of Arc_2 (m) 0.0739 Total length (m) 161.675	dilation factor of Arc_2	0.07	Total length	(m) 161.675	6
rf frequency (GHz) 11.4240 align.tolerance x (micron) 1.7	rf frequency	2) 11.42	align.tolerance x	(micron) 1.7	8
rf voltage (MV) 352.5444 align.tolerance y (micron) 0.1	rf voltage	352.54	align.tolerance y	(micron) 0.1	8
rf phase at sigz (degree) 20.0671	rf phase at sigz	ree) 20.06			
voltage decrement at sigz (%) 2.0319	voltage decrement at sigz	2.03			

X-2 Second Compressor

for JLC

