Large Enhancement of Spin Polarization Observed by Photoelectron from AlGaAs-GaAs Superlattice and from Strained GaAs

K. Itoga, Y. Kurihara^A, T. Omori^A, Y. Takeuchi^A, M. Yoshioka^A, T. Furuya^A, T. Nakanishi^B, H. Aoyagi^B, M. Tsubata^B, H. Baba^C, M. Mizuta^C, H. Horinaka^D, Y. Kamiya^E, T. Kato^F, T. Saka^F

The Graduate University for Advanced Studies, Oho 1-1, Tsukuba-shi, Ibaraki-ken 305, Japan ^AKEK, National Lab. for High Energy Physics, Oho 1-1, Tsukuba-shi, Ibaraki-ken 305, Japan ^BDepartment of Physics, Nagoya Univ., Furo-cho, Chikusa-ku, Nagoya 464, Japan ^CFundamental Research Lab., NEC Corp., 34 Miyukigaoka, Tsukuba-shi, Ibaraki-ken 305, Japan ^DCollege of Engineering, Univ. of Osaka Prefecture, 4-804 Mozu-Umemachi, Osaka-shi, Osaka-fu

591, Japan

^EToyota Tech. INst., 2-12 Hisakata, Tenpaku-ku, Nagoya-shi, Aichi-ken 468, Japan

^FNew Material Res. Lab., Daido Steel Co.Ltd., 2-3- Daido-cho, Minami-ku, Nagoya-shi, Aichi-ken 457, Japan

Abstract

We have developed two types of photoelectron source with highly spin polarized electrons One is a NEA photocathode of $Al_{0.35}Ga_{0.65}As$ -GaAs superlattice grown by the MBE method. The maximum polarization of 71.2±1.1(stat.)±6.1(sys.) % was obtained at a photon wavelength of 802nm at room temperature.

The other is a NEA photocathode of strained GaAs layer grown on $GaP_{0.17}As_{0.83}$ base layer by the MOCVD method. The maximum polarization of 85.5 ± 1.1 (stat.) ± 6.3 (sys.) % was obtained at a photon wavelength of 860nm at room temperature.

AlGaAs-GaAs 超格子と Strained GaAs による高偏極度電子の発生

1. はじめに

スピン偏極電子源はJLC(Japan Linear Collider)¹⁾等のリニアコライダーの電子源として開発 されることが望まれている^{2).3)}。我々は高偏極度を得るために、AlGaAs-GaAs 超格子及びstrained GaAs からの Photoemission を利用する方法を開発している。

従来の GaAs を Photocathode として用いる限り偏極度は 50% が限界である。その原因は価電子 帯のエネルギーバンドが縮退しているためである。そして、この縮退を解く方法として超格子あるい はカルコパイライト結晶等が提案された。しかしつい最近まで偏極度が 50% を越えるデータは報告 されたことがなかった^{4).5)}。

前回の本研究会で、我々は最近の進んだ MBE (Molecular Beam Epitaxy) 技術で作られた AlGaAs -GaAs 超格子を用い偏極度 55% という値を報告した。今回、超格子の厚さを薄くすることによって さらに 71.2% という高い偏極度を得ることができた。

またもう一つの方法である MOCVD (Metal Organic Chemical Vapor Deposition) 法で製作された Strained GaAs では、 85.5% の偏極度が得られた。これは現在の世界最高記録である。

2. 実験装置

実験装置を図1に示す。装置はおおまかにレーザー部、電子銃部、偏極度測定部の3つに分けられ る。円偏光源は Ar⁺ レーザーで励起する Ti:Sapphire レーザーを用いる。 このレーザーの波長は 700-900nm の範囲で可変であり、偏極度が最大になるよう波長を選択することができる。電子銃部は 1.1x10⁻⁹Torr の真空度で、カソード表面を NEA (Negative Electron Affinity) にするための Cs dispenser と 0₂ 導入用のポートが取り付けられている。 偏極度の測定には金の原子核によるMott 散乱が用いられ、後方の±120° に弾性散乱されてくる電子の個数を計数し、左右の非対称度から 偏極度を算出する。

3. AlGaAs-GaAs 超格子

超格子は 520℃ の温度で GaAs 基板に MBE により生成される。 GaAs 基板に平らな表面にするた めに500Aのバッファ層を積み、基板からの電子を取り出さないための AlGaAs 障壁層を1 μ m積む。そ の上に GaAs 19.8Å, AlGaAs 31.1Å の超格子を 1000Å 積む。この結果、理論的には Heavy-holeとL ight-holeは 44meV のバンド分離が起こり、室温の熱雑音 26meV より大きくなるはずである。また 超格子内の減偏極を小さくする意味で、前回に比べ超格子の厚さを4分の1にしている。最上層の As は超格子の表面を大気に晒さないためのものであり、電子銃に装着後は加熱して飛ばす。基板の GaAs 以外のすべての GaAs, AlGaAsには NEA 状態にしやすくするために Be をドーピングしてある。

図2に偏極度のレーザー波長依存性を示す。偏極度は 40% レベルの波長領域(700-740nm)から70% レベルの波長領域(780-800nm)へステップアップしているように見える。これは長波長側が Heaveyhole からだけの寄与に対し、短波長側は Heavy-holeと Light-hole の2つのバンドから電子が励起 されているので偏極度が低くなっているからである。最大偏極度は波長 802nm に対して 71.2±1.1 (stat.)±6.1(sys.)% であり、この時の量子効率は 2.7x10⁻⁶ であった⁶⁾。

4. Strained GaAs

±6.3(sys.)% で、量子効率は 4x10⁻⁴ であった⁷⁾。

GaAs 基板に 2µm の GaPAs を MOCVD 法で成長させる。さらに GaPAs 上に GaAs 800A 積み上げ る。表面の GaAs は GaPAs との格子不整合により歪を受け、縮退した価電子帯のバンドの分離を起 こす。P(リン)の割合 0.17 に対し格子不整合は 0.6% であり、計算上バンドの分離は 40meV 程度 と予想される。 図3に偏極度のレーザー波長依存性を示す。860nm で偏極度 85.5% のピークは縮退 の解けた Heavy-hole からの電子だけを励起した結果である。 このピークより波長が短くなると Light-hole からの励起も起こり偏極度は落ちる。800nm で肩を作っているがここまでが GaAs 薄膜 の寄与である。さらに波長を短くすると GaPAs からの電子が寄与して、偏極度はさらに落ちていく。 図4にレーザーの波長に対する量子効率を示す。800nm の肩を境に短波長側で量子効率が立ち上が るのは GapAs からの寄与によるものであり、長波長側は GaAs からの量子効率である。これは偏極 度のレーザー波長依存性の結果と一致している。最大偏極度は860nmの波長に対し85.5±1.1(stat.)

参考文献

Proceedings of 2nd Workshop on Japan Linear Collider, KEK, Nov. 6-8, 1990
M. Peskin, talk given at the 2nd Workshop on Japan Linear Collider
T. Omori, et al., "Physics on the Z pole", Proceedings of the 2nd Workshop on JLC
F. Ciccacci et al., Appl. Phys. Lett. <u>55</u>(16), 1686(1989)
R. Houdre et al., Phys. Rev. Lett. <u>55</u>(7), 734(1985)
T. Omori, et al., KEK Preprint 90-190/DPNU-91-12(to be published in Phys. Rev. Lett.)
T. Nakanishi, et al., DPNU-91-03(to be published in Phys. Lett. A)

表1. AlGaAs-GaAs 超格子の構造

As	(~2μm, for surface passivation)
Bc-doped AlGa Bc-GaAs Be-Al _{0.35} Ga _{0.6}	As-GaAs Superlattice (0.1μm) (19.8Å: 7 monolayers, p=6.2x10 ¹⁸ /cm ³) ₅ As (31.1Å: 11 monolayers, p=4.0x10 ¹⁸ /cm ³)
Be-doped Al	$_{5}Ga_{0.65}As (1\mu m, p=5.0x10^{18}/cm^{3}, \text{ for barrier})$
Be-doped GaAs	s buffer layer (500Å, p=7.7x10 ¹⁸ /cm ³)
Zn-doped GaA orientatio	s Substrate (400µm, p=2.0x10 ¹⁹ /cm ³ , m:(100))

Analyser

Gun Assembly

Laser Optical System

(5) (7)

図1. 実験装置

表2. Strained GaAs の構造

Zn-doped GaAs ($t \sim 800 \text{\AA}$, $p \ge 5 \times 10^{18} / \text{cm}^3$)
Zn-doped GaP _x As _{1.x} ($x=0.17\pm0.01$)
$(t - 2\mu m, p \ge 5 \times 10^{18} / cm^3)$
Zn-doped GaAs Substrate(1=350µm,
$p \ge 5 \times 10^{18} / cm^3$, Orientation: (100))

のレーザー波長依存性

