MULTIPACTORS IN KLYSTRON CAVITIES

Kazutaka HAYASHI, Toshiyuki KIKUNAGA*, Hiroshi IYEKI

Mitsubishi Electric Corporation, CEW, *CRL

8-1-1 Tsukaguchi Honmachi, Amagasaki, Hyogo 661

Abstract:

A multipactor phenomenon in a klystron causes gain shortage or instability problem. Some tests using a prototype klystron input cavity revealed the microwave discharges in vacuum with magnetic field. The test results and the methods to avoid multipactors are discussed in this paper.

クライストロン空胴マルチパクタ

1. はじめに

高エネルギー物理学研究用の線形加速器は、より 高い電子・陽電子のエネルギーを必要としている。 今後計画される高エネルギー線形加速器の建設や増 強に使用されることを目標とした大出力クライスト ロンを設計・試作した結果、目標である60MW出力 を確認できた[1]。開発初期の試作クライストロンに は、利得不足と、入力空胴部の異常吸収現象が見ら れた。この現象について調査したので、その結果と 防止方法について述べる。

2. 入力空胴の異常吸収現象

2.1 試作クライストロン

入力空胴は、電子ビームに速度変調をかけるため に設けられた空胴である。そのため、外部より入力 空胴にマイクロ波電力を供給し、空胴共振状態とし て、空胴ギャップ部に、強い高周波電界をかける。 図1に、入力空胴の断面図を示す。この図の場合、 同軸ケーブルで供給されたマイクロ波は、ループ結 合を介して、空胴に蓄積される。通常、組立時(電 子ビームがないとき)の入力空胴は、過結合として おく。これは、クライストロンの入力空胴に電子 ビームが存在する場合に、そのコンダクタンス分を あわせて、整合を取るためである。このため、クラ イストロンにマイクロ波を入力した場合、通常は、 ビームのない場合の反射は大きく、ビームがある場 合のマイクロ波反射は少ない。ところが試作クライ ストロンでは、磁界強度によっては、これと異な り、ビームのない場合の反射が小さく、ビームがあ る場合のマイクロ波反射が大きかった。この現象 を、入力空胴部の異常吸収現象と呼ぶ。この現象の ために、クライストロン動作時(ビームあり)に、 空胴ギャップに十分な高周波電界がかからず利得不 足を引き起こす。なお、この現象は、磁界強度の 他、周波数、マイクロ波電力、電子銃のヒーターオ ン/オフなどど関連があり、動作の不安定性を示す 可能性があった。

2.2 再現試験方法

この異常吸収現象の解明のため、試作クライス トロンの入力空胴部分を切り出し、この空胴単体 部を、図2に示すように、磁界装置、真空装置、 マイクロ波入力装置に取付けた。この試験装置を 用いて、各パラメータ(磁界強度、真空度、マイ クロ波入力電力・周波数、ただし電子ビームを除 く)に対するマイクロ波反射電力変化を測定する

図1. 入力空胴の断面図

ことで、異常吸収現象が再現するか調べた。ドリフ トチューブの一方は観察窓となっており、内部で放 電等による発光が起これば見ることができる。

2.3 再現試験結果

試作クライストロンの動作条件とできるかぎり 同様なパラメータを試験装置で作り試験したが、異 常現象を捕えることができなかった。そこで観察窓 の代わりにヒータを取付け、ドリフトチューブの片 側より熱電子を供給し実験した結果、この空胴単体 試験装置で、異常吸収現象を再現できた。さらに、 高パルス繰り返し条件下で、一旦異常吸収現象を引 き起こすことさえできれば、何とか現象を維持でき ることが分かった。ヒータは無くても(観察窓に戻 す)、パルス繰り返しを50から200ppsに上げ、その まましばらく待てば、異常吸収現象は発生・維持で きることが確認できた。これは、放電開始にきっか けが必要という、高真空での小型イオンポンプ(ペ ニングゲージ)の起動現象と良く似ている。

図3に磁界強度とマイクロ波反射電力変化を測 定した例を示す。磁界強度は0~1400Gauss、真空度 は3x10⁻Torr、マイクロ波入力は2.861GHz,400W で、パルス幅4µs繰り返し200ppsである。磁界強度 510 Gauss付近で広範囲にわたり大きな吸収(A部) が見られる。その他、1000Gauss付近でも若干の吸 収(B部)が見られる。A部の吸収現象発生時に は、真空度が若干悪化した。空胴ノーズ部先端がほ んのかすかに発光しているのが観察できた。マイク ロ波入力電力を減少させればA部の吸収の幅及び深 さが小さくなる。また、10⁴ Torr台に真空度を悪く させた場合には、B部の吸収が大きくなり(反対に A部の吸収は減少)、空胴内部全体(特に結合ルー プ方向)が明るく発光した。

2.4 異常現象の原因

これらの実験より、異常吸収現象は空胴内のマイ クロ波放電であることが明かとなった。この放電 が、空胴内の負荷となり、空胴の整合条件を変化さ せる。マイクロ波の周波数2.861GHzがサイクロトロ ン周波数となる磁界強度は1022Gaussであり、B部の 吸収に対応する。このとき、電子は、サイクロトロ ン運動をして、空間中で加速されてゆく。特に低真 空のときは、電子が残留ガスと衝突し電子サイクロ トロン共鳴(ECR)によるプラズマを形成する。真 空度が高い場合は、このECR放電の維持が難しい。

一方、A部はちょうどECR条件を満足する磁界の 半分付近である。真空の悪化や、発光の観察から、 静磁界のある場合の一面性のマルチパクタであると 考えられる。クライストロン空胴部の絶縁セラミッ クス表面[2]や、レッヘル線共振器[3]のマルチパク タについて述べた文献を参考にして、今回のマルチ パクタについて、簡単なモデルで検討してみた。

3. マルチパクタモデル

空胴内の電界方向は基本的に軸方向であるが、 ギャップ先端近辺では、半径方向電界が存在する。 この半径方向の高周波電界は、軸方向に印加されて いる磁界と直交しているために、ECRプラズマや、 一面性のマルチパクタが発生可能である。ここで、 最も簡単なモデルとして、平行平板(y-z平面)を 考え、x方向に高周波電界、z方向に静磁界がかかる 場合を考える。図4にモデルと計算例を示した。 ECR条件を満たす磁界の半分の磁界では、電極表面 より発生した電子は、加速された後、ちょうど1周 期で、元の電極に戻り衝突を起こし、一つ以上の2 次電子を発生させる。この過程は次々と雪崩的に起

図3 入力空胴反射電力の磁界強度変化

図4 平行平板モデル

こり、マルチパクタ条件を満足する。図5には、電子の出発したとき(初期エネルギー3eV)の位相 と、戻ってきたときの位相(次の出発位相)の関係 を示す。電子が、加速され再突入することと、衝突 時に二次電子を発生させるのに十分なエネルギー

(60eV以上)を持っていることが、放電の持続に必要である[3]。この例では、350⁻⁷⁰⁰Gauss範囲での計算結果、60eV以上のエネルギーを持って戻ってくるものについて、黒丸で示した。このうち、再突入により生じた二次電子が、さらに次回に戻る場合についてのみ、実線でつないだ。この場合、350,700 Gaussは、放電が持続しないのに対して、その間の磁界強度では、位相バンチングが見られ、広い範囲の初期位相の電子が放電持続に寄与している。このように平板モデルでも、図3のA部の吸収について対応がつく。実際には円筒形状であり、電界強度や方向は一定でないため、現象は、より複雑になる。

4. マルチパクタ対策

サイクロトロン周波数と一致する磁界強度と、そ の半分の磁界強度付近での使用を避けないとならな い。その磁界の影響範囲は、空胴ノーズ部の形状に も依存している。その形状によって、マルチパクタ を抑制することが可能である。ノーズ形状を変えた り、ノーズ先端にスリットを設ける効果を実験で確 認してみた。

ノーズ部を取り替えることができ、共振周波数を 可変できる試験空胴を作った。実験法は、前述のも のと同じである。ノーズ部の形状の違う場合の、入 力空胴の吸収現象について、測定した例を6図にし めす。棒状先丸断面のノーズに比べ、楔型断面の ノーズは、ECR放電や、多周期マルチパクタの影響 が大きくでること、ノーズ先端にスリットを王冠状

図6 各種ノーズ先端形状による吸収現象

に掘ったものは、かなりマルチパクタを抑さえる効 果があることが確認できた。スリットは、マルチパ クタ過程(雪崩)を止める効果がある。さらに、 ノーズ部位に二次電子放出係数の低い材質、あるい は、薄膜のコーティングをすることによって、マル チパクタを抑制することも考えられる。マルチパク タ放電開始のためには、放電の種が必要である。 熱、電界放出、ビーム衝突、X線などにより生成さ れた電子が種と考えられる。これらも、空胴ノーズ 部の表面状態に大きく左右されるものが多い。

5.まとめ

試作クライストロンの入力空胴部でおこった異常 吸収現象は、その入力空胴単体を切り出して試験し ても再現した。異常吸収現象の原因は、クライスト ロン空胴のノーズ先端部で起こる一面性のマルチパ クタである。特に、使用周波数に対しサイクロトロ ン周波数が約0.5倍となる磁界強度近辺では、マルチ パクタ条件が成立する。さらに、サイクロトロン周 波数と一致する磁界強度近辺では、電子サイクロト ロン共鳴が成立し、異常現象となることがある。

これら空胴部のマイクロ波放電は、クライストロ ンの全ての空胴に共通した問題で、利得の減少や、 不安定現象を引き起こす。磁界強度に注意すること や空胴ノーズ部位の形状工夫によって、避ける又は 抑制することが可能である。

参考文献:

- [1] 林、田中、家喜;「Sバンド60MWパルスクライスト ロン」第17回リニアック技術研究会(1992)
- [2] D.H.Preist, R.C.Talcott; "On the Heating of Output Windows of Microwave Tubes by Electron Bombardment" Trans. IRE, ED-8, 243 (1961)
- [3] 加藤、林、武田;「磁界中のマルチパクタ放電」電気 学会論文誌A、106,7(1986)