PF SLOW POSITRON SOURCE

A.SHIRAKAWA, A.ENOMOTO, T.KURIHARA, H.KOBAYASHI, T.SHIDARA, K.NAKAHARA, T.SUZUKI, H.HIRAYAMA, I.KANAZAWA* and A.ASAMI** KEK, National Laboratory for High Energy Physics 1-1, Oho, Tsukuba-shi, Ibaraki-ken 305 * Tokyo Gakugei Univercity Nukuikita-machi, Koganei-shi, Tokyo 184 ** Naruto Univercity of Education Naruto-cho, Naruto-shi, Tokushima 772

ABSTRACT

A new slow-positron source is under construction at the Photon Factory. Positrons are produced by bombarding a tantalum rod with high-energy electrons; they are moderated in multiple tungsten vanes. We report here the present status of this project.

P F 低速陽電子源

1. はじめに

高エネルギー物理学研究所の放射光実験施設 (PF)においては、電子線形加速器を使用して 低速陽電子線を発生させ、物性研究その他に利用 するためのビームラインを建設している[1]。これ までに陽電子発生装置から実験エリアまでのビー ムラインが一応完成し、ビームラインを接地電位 にしての実験を行っている。実験で、ビームライ ン終端にて低速陽電子を確認したのを受け、ビー ムラインのアップグレード工事を行いつつある。 それらの現状及び今後の見通しについて報告する。

2. 実験の目的

陽電子源としては β^+ 崩壊する放射性同位元素を 用いる方法が実験室規模でできる手法である。陽 電子の電子との対消滅を用いた実験は放射性同位 元素を陽電子源として盛んに行われている。陽電 子の強度としては毎秒10⁶-10⁶個といったところ であり、電流としてはフェムトアンペアのオーダ ーである。しかし例えば、走査型電子顕微鏡程度 の電流量数ナノアンペアを実現するためには、少 なくとも10¹⁰個の陽電子が必要であり、放射性同 位元素では殆ど現実的ではない。従って、線形加 速器によって生成される、強い陽電子ビームが期 待される。低速陽電子とは、簡単に言うと、固体 物質中に入射されることで減速されて熱化した後、 拡散によりその固体表面に達し、負の仕事関数に より表面から放出された陽電子のことである。

3. ビームライン概要

低速陽電子ビームラインは、2.5 GeVリニアック の終端部である第3スイッチヤード(地下)から クライストロンギャラリー(地上)にかけて設置 された。全体を鳥瞰した様子を図1に示す。低速 陽電子輸送用のビームダクトには、直巻きコイル およびヘルムホルツコイルによりソレノイド磁場 がかけられている。ダクトはICF114のフランジに より接続されており、接続部分の磁場の補正のた めにフランジ部を覆うソレノイドコイルを取付け てある。これにより、ビームライン全体が均一に 約100Gのソレノイド磁場となり、生成された低速 陽電子はこの磁場に巻き付けられて輸送される。

図1 低速陽電子ビームライン鳥瞰図

輸送は、ビームライン中5箇所に取付けられた可 動式の2次電子増倍管をモニターとして、またビ ームダクト各所に取付けられたステアリングコイ ルを用いて行われる。ターゲットからビームライ ン終端まで31mを1501/sおよび601/sのイオンポン プ計8台で排気し、10⁷ Paの良いところの真空度 を維持している。

4. 陽電子の生成

低速陽電子生成用ターゲットは水冷式タンタル 製で、総アルミ製真空槽中にある。13枚のタング ステン箔をモデレータとし、ターゲットおよびモ デレータには正の電圧がかかっている。ターゲッ トで制動放射、対生成によって発生した白色の陽 電子は、直後のモデレータにより「低速陽電子」 となり、ここにかけられた電場によって、その後 の真空ダクトに導かれる。図2はターゲットおよ びモデレータである。1992年夏に、このタンタル ターゲットを組み込んでからは、実験中の顕著な 真空度の劣化はなくなった。

得られる陽電子の個数を見積るために、他の研 究機関の100 MeV前後の電子線形加速器による低速 陽電子生成率のデータを参照する [2]。それらによ ると、電子ビーム 1 kWあたり毎秒 1 × 10⁸ 個の低 速陽電子が得られる。 PF電子線形加速器の公称 性能は、ビームエネルギー2.5 GeV、ピーク電流 50 mA、パルス幅 1 μ s、繰り返し周波数 50 Hzで、平 均ビーム電力 6.25 kWである。EGS4コード [3,4]を 使った計算 [5]によれば、E₄ = 2.5 GeV の時の最適 なタンタル標的の厚さ 6 放射長に対する 10 MeV以 下の陽電子生成率は、電子ビーム電力 1kWに規格 化して、E₄ = 150 MeV、タンタル標的厚さ 2 放射長 の場合のおよそ0.7 倍になる。このことから、E₄ = 2.5 GeVの時の電力規格化低速陽電子生成率は、 0.7×10⁸ e⁺/s と見積もることにする。この係数を使 うと、E_e = 2.5GeV でのビーム電力 6.25 kWでは、 低速陽電子ビーム強度は4×10⁸ e⁺/s となる筈である。

実際には、ターゲットへの電子の入射エネルギ ーは約2GeVで、ビーム電力は約10Wであった。 これは、実験室近傍にある大電力クライストロン からのノイズ軽減のためにそれらを待機状態にし ているのと、2.5GeVエネルギーアナライザー用モ ード(入射ビームの電力の上限が放射線のインタ ーロックにより最高50Wに制限されているモード) で使用していたためである。今後は後述のように 最高 6.5kW まで可能となる。

また、ターゲットから取り出す陽電子のエネル ギーは、ほとんど0から数10 keV 程度である。こ の上限値は、ターゲットにかける電位により決まっ てくる。

5. ビームライン終端での消滅 y 線測定

これまで行ってきた実験は、低速陽電子の発生 と輸送に主眼を置いていた。すなわち、ビームラ イン終端にシンチレータ (BGO 2" x 2")を置き、 陽電子消滅 y線を測定しながら、ターゲット/モ デレータにかける電圧や輸送路の磁場の最適化を 図ってきた。ビームエネルギーE。~2 GeV、ビー ム繰り返し25 Hz、ビームパルス幅 1 ns、ビーム電 力~10 Wというパラメーターで実験を行ってきた 中で、1993年7月には、1 次ビーム1 kWに規格化 して毎秒 10⁶ 個の陽電子を長さ 31 mの輸送路の終 端で検出した。

-376-

γ線測定装置周辺のダイヤグラムを図3に示す。 フォトマルチプライヤーからの信号を増幅して波 高検出器に入力する。また、波高検出器には、1 次ビーム側のトリガーをゲート信号として使用し ている。

6.陽電子源の高電圧化

低速陽電子ビームライン終端での低速陽電子の 確認にともない、実際の低速陽電子利用実験を念 頭に置いたグレードアップの一部を1993年年頭よ り行いつつある。ターゲット付近の放射線遮蔽を 強化して1次入射ビームのパワー増強に備えるこ とと陽電子源の高電圧化である。前者については 7節に記す。

試料の温度を変えながらディプス プロファイル を測定することを想定すると、試料を接地電位か ら浮かすよりも陽電子源を浮かしたほうが何かと 都合がよい。また陽電子の試料中での寿命測定を 行うときも、試料のポテンシャルが接地レベルで ないと寿命スペクトルに偽のピークが出てしまい、 うまくない。このようなことからターゲットとそ の直後の8mの直線部分のうち6mを最大60kVまで 浮かすこととする。ビームライン建設当初から高 電圧化に備えて絶縁碍子に取り替えられるような 架台の構造としておいたので、図4のようにター ゲット真空槽の足、イオンポンプ引き口等を絶縁 構造とし 0-60kV までエネルギー可変の陽電子ビー ムを発生する。なお、本施設の線形加速器はパル ス運転をしているので発生する 低速陽 電子もパ ルスビームである。したがって短時間に陽電子が 数多くやってくることになり、検出器の飽和、バッ クグランドの増加等をまねき好ましくない。高電 圧に浮かす6mの直線部両端にゲート電極を設けペ ニングトラップによる陽電子の蓄積を行い、疑似 的な直流ビームが取り出せるようになる予定であ る。

高電圧化する部分で使用する各種電源(陽電子 引き出し用高電圧電源、陽電子集束用コイル電源) 全体にも高電圧を印加することになる。従って、 それらを制御するローカル・コントローラととも にまとめて高電圧部に組み込み、接地電位にある パソコンから遠隔制御を行う。高電圧部と接地側 との間の通信は、電気信号を光信号に変換して行 う。パソコン上の電源制御プログラムは、 Microsoft Visual Basic によって構築し、視覚的な操 作で、電源等の遠隔制御を可能にする。これらを 図5に示す。

7. 放射線遮蔽強化

前述のように、陽電子源の高電圧化と並行して、 ターゲット付近の放射線遮蔽を強化する工事を進 めている。これは、1次電子ビームのビーム電力 を、これまでの約10 Wから最大6.25 kWでの実験が 可能になるように、遮蔽を増強するものである。 その具体的内容は次の通りである。

1) ターゲット周囲の遮蔽新設

図6に示すように、ターゲット真空槽の西側側 方に厚さ2mのコンクリート遮蔽を置き、上方に 厚さ0.2mの鉄の遮蔽を施す。

2) 第3スイッチャードの遮蔽強化

ビームラインの設置されている第3スイッチヤ ードは、外周を1m以上のコンクリートと2.5 m

図4 ターゲット以降6mまでを高圧化した様子

図6 ターゲット周囲の放射線遮蔽

以上の盛り土に覆われている。ただ、西側の搬入口の部分は、厚さ1mのコンクリート扉がある だけで、ここだけ地上の一般区域(=非放射線 管理区域)から直視できる構造になっていた。 今回、扉の内側に厚さ1mのコンクリート遮蔽を 増設し、この部分の遮蔽を強化した。

1次入射電子のビーム電力増強による、放射線安 全の使用変更は、既に認可されている。

8. 応用例 — 再放出顕微鏡

陽電子でしかできない実験のひとつとして、陽

電子の再放出現象を用いて表面の欠陥に捕獲され た陽電子の影を見る再放出顕微鏡[6]の試作を検討 している。図8に陽電子再放出顕微鏡の原理図を 示す。これを用いれば低速陽電子のもつ特性を生 かして、固体表面の欠陥観察であるとか、損傷を 与えずに生体物質の観察を行うなども可能と思わ れる。

9.終わりに

陽電子は、その特有の陽電子消滅という実験手 法とともに、電子を用いてなされている分析方法 に置き替わるだけのポテンシャルをもっていると 考えられる。したがって、電子に比べてどれほど 表面に対する感度がよいかを実証するために低速 陽電子を用いた回折実験[7]を計画している。

陽電子源の高電圧化等の改良と並行して、陽電 子ビームのマイクロビーム化を進めているが、上 述のような回折実験や再放出顕微鏡を実現するた めにも、ビームの高輝度化[8,9]も進めている。

-378 -

図8 陽電子再放出顕微鏡の原理図

参考文献

- [1] 浅見 明、他:ライナック研究会、16(1991) pp.304.
- [2]A.Asami et al., Materials Science Forum 105-110 (1992) 1833; 浅見 明、他: 放射線、18 (1992) 35.
- [3] W.R.Nelson, H.Hirayama & D.W.O.Rogers: "EGS4 Code System", SLAC-265 (1985).
- [4] H.Hirayama : KEK Internal 89-17 (1990).
- [5] H.Hirayama : Proc. 2nd Workshop on Researches Using Positrons, Tokyo, 1991 (JAERI Takasaki, 1991) 145.

[6] G.R.Brandes, K.F.Canter & A.P.Mills, Jr. :Phys. Rev. B43 (1991) 10103.

- [7] Alex.H.Weiss, I.J.Rosenberg, K.F.Canter,
- C.B.Duke & A.Paton :Phys. Rev. B27 (1983) 867.
- [8] A. P. Mills, Jr. : Appl. Phys.23 (1980) 189.
- [9] K. F. Canter and A. P. Mills, Jr. :Can. J. Phys. 60 (1982) 551.