Proceedings of the 18th Linear Accelerator Meeting in Japan, Tsukuba, 21-23 July 1993

RF CAVITY FOR THE PHOTON STORAGE RING

Hiroshi TSUTSUI, Toshitada HORI, Takeshi TAKAYAMA and Hironari YAMADA Sumitomo Heavy Industries, Ltd.

2-1-1 Yato-cho, Tanashi-city, Tokyo 188

Isamu SATO KEK, National Laboratory for High Energy Physics 1-1 Oho, Tsukuba-shi, Ibaraki-ken, 305 Koichi SHIMODA 1-19-15 Kichijoji-Minamicho, Musashino 180

ABSTRACT

An RF cavity prototype for the Photon Storage Ring was assembled and tested. The measured data agree well with the data from 3D code MAFIA.

光蓄積リングのための RF 加速空洞

1 はじめに

光蓄積リング用の RF 加速空洞の試作品を製作し、 周波数特性や最低次のモードの電磁場分布を測定し た。測定結果は MAFIA による結果とよく一致する ことがわかった。

2 RF 加速空洞の設計

設計中の光蓄積リング[1]は電子軌道半径が15cm で、中に60°の広がりを持つパータベイタが2個向か い合わせに入る。RF加速空洞はその隙間に入れなく てはならない。入射方法は整数共鳴法を用い、入射軌 道は水平方向に±3.5cm 程度広がるので、その空間は 一様に加速できるようにしなければならない。パンチ 数は光蓄積リングの原理からの要請で8にするとよい ので、周波数は2.5GHz程度となる。光と電子の相互 作用のために、RF空洞の外側は切り欠かねばならな い。上記の条件を満たすような加速空洞の設計のため に3次元シミュレーションコードMAFIAを用いた。 シミュレーションに使用した加速空洞の形状は図1 のとおりである。図は空洞の1/4を示している。この

図 1: 加速空洞の形状 (1/4)

形状では $f_a = 2.62 GHz, Q_0 = 8796, R_s = 0.36 M\Omega$ ($\sigma = 5.0 \times 10^7 \Omega^{-1} m^{-1}$)となる。電子から放出され た光が自由に外側の鏡で反射できるように RF 空洞 の外側方向は切り欠いてある。ギャップがコの字型 をしているのは空間で一様に加速するためである。 実効加速電圧は図 2 のとおりである。

図 3: 測定の構成

3 試作品のテスト

試作 RF 加速空洞はアルミで製作し、ギャップは 色々な形で調べられるように着脱可能にした。空洞 内の電場分布を測るために、ビーズパータベイショ ン法 [2] を用いた。ビーズは直径 3mm のアルミを用 いた。公式

$$\frac{\Delta f_a}{f_a} = -\frac{1}{2W} \frac{4}{3} \pi \tau_0^3 3(\epsilon_0 E^2 - \frac{B^2}{2\mu_0}) \tag{1}$$

を用いると、MAFIA の計算により共振周波数のず $h\Delta f_a/f_a$ は最大で、 -4.4×10^{-4} と見積られる。測 定の構成は図 3 のとおりである。

今回はある特定の周波数の反射波の入射波に対す る位相角のずれ ψ を測り、それを共振周波数のずれ に直すことにした。 $\beta = Q_0/Q_{ext}$ 、 $\phi = 2Q_0 \Delta f_a/f_a$ とおくと公式は

$$tan\psi = \frac{2\beta\phi}{\beta^2 - \phi^2 - 1} \tag{2}$$

である。多少オーバーカプリング ($\beta > 1$) にすると、 $\phi n \psi o$ 一価関数となり、解析しやすい。今回の測定

図 4: スミスチャート

図 5: 測定から得られた共振周波数のずれ

図 6: MAFIA から得られた $\epsilon_0 E^2 - B^2/2\mu_0$

-268 -

では $\beta \sim 2$ 、 $Q_0 \sim 1500$ とすると $\phi \sim -1.3$ なので、 最大で $\psi \sim -76^{\circ}$ と見積られる。

加速モードに対応するスミスチャートは図4の様 になった。図4から、 $f_a = 2.67 GHz$ 、 $Q_0 = 1563 c$ なった。MAFIA による計算との共振周波数のずれ は2%程度であった。 Q_0 は MAFIA による計算より かなり小さい値となったが、これは材質がアルミで あることと、ギャップ部分ををねじで止めているこ と等が原因であると考えている。

ビーズパータベイションでの測定結果を図5に示 す。 $-\Delta f_a/f_a$ の最大値は4.1×10⁻⁴となり、ほぼ予 期した値と一致した。MAFIA から得られた $\epsilon_0 E^2 - B^2/2\mu_0$ を図6に示す。図5と傾向がよく似ている。

4 まとめと今後

測定結果と MAFIA による計算はかなりよく合っ ている。光蓄積リングの最適化にはこの RF 空洞の 電磁場分布でのトラッキング、高次モードの計算が 必要である。ほかのギャップ形状も計算してみるこ とにより、より適した構造を決める予定である。

参考文献

- H. Yamada, Jpn. J. Appl. Phys. 28 (1989)
 1665.: H. Yamada, 第 16 回 HiSOR 研究 proc. Hiroshima, 1992, 3.
- [2] L. C. Maier, Jr. and J. C. Slater, "Field Strength Measurements in Resonant Cavities", J. Appl. Phys. vol. 23 no. 1 (1952) pp. 68 - 77.