20-P18

RF PROCESSING OF AN S-BAND HIGH GRADIENT ACCELERATOR UNIT

S. MORITA

ATC Co.,Ltd.

36-7, Namiki-cho, Hachiouji-shi, Tokyo, 193, Japan

ABSTRACT

A 3m-long S-band accelerating structure is used in 1.54 GeV Linac of Accelerator Test Facility. The accelerating structure should be processed up to 200 MW which produce 52 MV/m accelerating gradient. The process of RF processing is described.

S-band 高電界加速管のRFプロセッシング

はじめに

Japan Linear Collider (JLC)の為の、試験加速器施 設 Accelerator Test Facility (ATF)^[1]において、1.54 GeV ダンピングリングの入射器として、S-band 電 子ライナックの建設が文部省高エネルギー物理学 研究所で進行中である。

このリニアックのレギュラーユニット は3m 長 加速管 2 本で構成される。加速管は 1 本あたりピ ーク 電力 200 MW を入力し、52 MV/m の加速勾配 で運転する予定である[2]。現在 1995 年度に 1.54 GeV ビーム加速運転開始を目標とし、リニアック 建設と平行して加速管及びコンポーネントの RF プロセッシングをユニット毎に行っている。

本試験加速器では新たに開発したコンポーネン ト試験の為、真空排気作業や加速管及び RF コン ポーネントのプロセッシングが頻繁に行われるが、 これに要する時間はリニアックの運転効率を大き く左右する。

本稿では、ユニットの装置構成、リニアックの 2 ユニットについて行った高電界加速管のRFプロ セッシングの状況及び大気圧開放後の再プロセッ シング終了迄の比較結果を報告する。

図1レギュラーユニット加速装置の構成

システムの構成

図1に1ユニットの構成を示す。高周波源には 85 MW 出力クライストロン(東芝製 E3712)を使用 し、パルス幅は4.5 μ sec、繰り返しは最大 25 PPSであるが、本実験では 12.5 PPS で運転した。 クライストロン入力パルスの立ち上がりから3.5 μ sec のタイミングで 180 度位相反転することによ り、パルス圧縮空洞 (SLED) 出力は最大電力で 400 MW、1 μ sec となり、その後 3 dB カップラーに より加速管 2本へ分けられる。したがって加速管 1本へ 200 MW入力される事になる。

加速管、導波管及びSLEDの各真空度はコール ドカソードゲージ(CCG)でモニターし、設定圧力 値(5x10⁻⁵ Pa)以上で変調器トリガーをとめる様に なっている。このインターロックは最大繰り返し においてもパルスの1周期以内に変調器トリガー を停止するので、高電界運転中での放電により真 空度が急激に悪化した場合加速管及びSLED、ク ライストロン高周波窓などの部品へのダメージを 防止する。このCCGコントローラは実装密度を 向上する為2チャンネルがNIM 規格モジュール の2幅になっており、計算機外部制御が可能であ る。真空度の絶対値測定には BA ゲ-ジを使用して いる。

導波管、ゲージポート、接続パイプ等の RF 立 体回路 を構成する部品は真空中へのガス放出量を 低減する為に、全て電界研磨処理を行っている。 これにより RF プロセッシング前の到達真空度は 電界研磨処理しない物と比較して約1桁良くなる 事が確認できており、プロセッシングに要する時 間の短縮に寄与している。

RF プロセッシング

プロセッシングはクライストロンの RF 入力電 力を可変する事で RF 出力電力を可変して行う。 初期段階ではパルス圧縮はせず、クライストロン 出力が 70 MW まで到達の後、位相反転によるパル ス圧縮を行ない最大電力まで順次上げていった。 クライストロン出力が 10 MW 付近でクライストロ ン出力導波管真空度の悪化が見られたが、ピルボ ックスタイプ高周波出力窓の観測窓よりアルミナ 上の発光が見られたので、アルミナ表面のマルチ パクターが原因であることと考えられる[3]。この 状態でプロセッシングを維持しておくと数時間後 には目視で確認出来ない程度に発光は弱まり、真 空度は回復した。この事よりマルチパクター領域 の低電力でアルミナのプロセッシングが不可決で ある事がわかる。最大電力で長時間運転した後で も長期停止期間をおいた場合には、低電力入力時 に窓の発光が見られるので、低電力プロセッシン グが必要である。

図2にユニット組み立て後の最初のプロセッシングの様子を、また図3には大気開放後の装置再

立ち上げでの再プロセッシングの様子を示す。最 初のプロセッシング時には低電力時にシステムチ ェック及び SLED 空洞のチューニングなどに 200 時間ほど費やしているので、正味のプロセッシン グ時間は400時間程度である。プロセッシングは 真空トリップをしない様に除々に RF 出力を上げ ていくが、一たび放電による大きな真空悪化があ った後は再び同じ RF 出力が入るまでは、30~60 分程度要する。最初のプロセッシングにはこの様 な大きな放電が頻発し、そののりこえに大部分時 間を費やすので繰り返しを上げてプロセッシング 時間短縮をする事は難しい。一方、最初のプロセ ッシング終了後の再立ち上げでは、180 MW 入力 まで28時間で到達するが、これは突発的な大きな 放電が少ない為である。いずれの場合もプロセッ シング中は 10-5[Pa]台の真空度であり、終了後は徐 々に下がっていく。

図 2 レギュラーユニット組み立て後最初のプロセッシング 時間に対する加速管入力電力と真空度の変化

図4に200 MW入力時の波形データを示す。ク ライストロンビーム電圧はCデバイダーの出力を、 各RF波形は導波管に取り付けた-70 dBのベーテ ホールカップラーからの信号の検波出力を示した。 計算機及びペンレコーダ記録用にはピークパワー メーターのアナログ出力をアイソレーションアン プで中継しモニターしている。

図 4 加速管入力電力 200MW 時の各波形

レギュラーユニットとは別に、リニアック最上 流の RF ユニットは、1本のクライストロンで加速 管1本とバンチャー3台に RF 電力を供給している が、その RF 波形はパルス圧縮を行わず、最大 100 MW、1 µ sec 幅の矩形パルスである。

このユニットを最大電力の 100 MW までプロセ ッシングした時の様子を図 5 に示す。このプロセ ッシング中に都合により 3 回大気に開放せざるを 得なかったが、その中断からの立ち上げ (20時間 程度) も含み総計 265 時間で 100 MW に到達した。 中断等を除くと正味 190 時間程度の所要時間であ る。真空度は 3 回の大気開放にもかかわらず

図5入射部加速管で大気状態から3回繰り返した立ち上 げにおけるプロセッシング時間に対する加速管入力電力と 真空度の変化

すぐ復帰し、プロセッシングの進行と共に下がっ ていく傾向にあった。

次に、このユニット内の加速管を交換し、再度 加速管のプロセッシングを行った。この時、ユニ ット内の他のコンポーネントは既にプロセッシン グ済であるので、この場合、加速管のみのプロセ ッシングをする事と等価である。その様子を図6 に示す。プロセッシング終了後すぐに60 MW でビ ーム運転の必要があったので、70 MW までの入力 でプロセッシングは中断された。総計120 時間で 70 MWに到達し、180時間後には問題なく31 MV/m の加速勾配で運転する事が出来た。尚、加速管入 力部の真空度が他より悪いのは隣接するバンチャ ーからの放出ガスによるものである。

図6入射部加速管交換後の立ち上げ時間に対する入力電力 と真空度の変化

まとめ

S-バンド高電界加速管のパルス圧縮波形で 200 MW、矩形パルスで100 MW までの RF プロセッシ ングの様子を示した。最初のプロセッシングに要 する時間は、パルス圧縮波形で400 時間、矩形パ ルスで190 時間であり、大気開放後の再立ち上げ は、28 時間程度で行う事ができた。

謝辞

KEK JLC R&D グループの皆様には多大な御指 導及び貴重な助言を頂きました。ここに厚く御礼 申し上げます。

参考文献

- [1] S.Takeda et al.,"1.54 Gev ATF Damping Ring Injector Linear Accelerator", Proc 第 18 回リニアック研究会
- [2] H.Matsumoto et al,"An S-band 3m-long Accelerating Structure for ATF", Proc 第 18 回リニアック研究会
- [3] A.Miura et al.,"Development of an S-band RF Window for Linear Collider", Proc 第 18 回リニアック研究会