JAERI-Conf 94-003

20-P27

Design of a Transport System for Heavy-ion-induced Plasmas Experiments at TIT-RFQ

K.Sasa , Y.Oguri , T.Hattori Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Oh-okayama 2-12-1,Meguro-ku,Tokyo 152,JAPAN

ABSTRACT

A 80 MHz RFQ-Linac at TIT (TIT-RFQ) is to be applied for basic research on Inertial Confinement Fusion (ICF) and a heavy ion pumped laser. For these experiments, this linac and transport system are required to create a high intensity and high brightness beam. The TIT-RFQ accelerates particles with a charge to mass ratio (q/A) greater than 1/16 from 5keV/amu to 214keV/amu. A transport system after the TIT-RFQ is designed by using three Q-magnets and a beam kicker. Ion beam of O⁺ with currents of 7mA is expected to be focused to about 1 mm².

東工大重イオンRFQ型線形加速器におけるプラズマ発生実験用 照射システムの設計

1. はじめに

東京工業大学原子炉工学研究所では、慣性核融 合及び重イオン励起レーザーの基礎研究を行う目 的で、RFQ型線形加速器とIHQ型線形加速器 からなる高強度重イオンビーム照射システムの建 設を予定している。このうち前段加速器である重 イオンRFQ型線形加速器(TIT-RFQ)^[1]について は、すでに設計及び建設が行われ、1993年11月に He⁺の加速テストに成功した。また1994年4月には C²⁺についての加速も成功している^[2]。

Table-1

Design Parameters of the TIT-RFQ

Charge-to-mass ratio	≧1/16
Operating frequency (MHz) 80.9
Input energy (keV/amu)	5
Output energy (keV/amu)	214
Duty factor (%)	10
Transmission (%)	
Considering the higher	order mode
OmA input	91.8
10mA input	68.4

現在、後段用のIHQ型線形加速器はまだ設計検討 をおこなっている段階であるので、実験はまず前 段のRFQ型加速器のみでおこなう予定である。TIT -RFQ は4ベインタイプで、電荷数対質量比1/16、 出射エネルギー214keV/amu、ビーム透過効率は 0 mA と10mA の入射電流に対してそれぞれ 92%と68 % という設計値を得ている。ここでは TIT-RFQ に おけるプラズマ発生実験を行う目的で設計及び製 作した照射システムについて報告を行う。

2. ビーム輸送系の設計

TIT-RFQ の目的であるプラズマ発生実験におい ては、ターゲットへのエネルギー付与密度を高め るために、照射時のビームスポットを最小化する 必要がある。しかし、TIT-RFQ では場所的及び予 算的な制約から、ターゲット位置までのビーム輸 送系の長さ、収束用の四重極電磁石の性能などが ある程度限られたものになった。ビーム輸送系と しては、RFQのベイン先端からおよそ 2m の位置に ターゲットがくるようにし、その間にRFQ加速 器の出口におけるビーム電流を測定するためのフ ァラディカップ及びゲートバルブを各々1台、ビ ームKicker、四重極電磁石3台の各コンポーネン トを配置するよう設計をおこなった(Fig-1)。 JAERI-Conf 94-003

設計する上において、四重極電磁石の QM1 と QM2 については、主要パラメータであるボア径と 最大磁場勾配をそれぞれ、 $\phi \in 0 \text{ mm}$ 、3 kG/cm と 仮定し、磁極付近で鉄の磁気飽和限界に近い設計 を行った。

またTIT-RFQ はパルス運転され、パルスの繰り 返し幅は最大30mS、最大稼働率が10%である ことより、ビームのパルス幅は3mS 程度になる。 しかし、TIT-RFQ の加速空洞のQ因子(Q~10,0 00)による時間的遅れから、大変立ち上がり時間 の遅いパルスになっており、そのままターゲット にビームを照射すればビームパワーが最大になる 前にターゲットが予備加熱され散逸してしまうこ とになる。 そこで立ち上がりの良いパルスビーム を照射するため、RFパルスに同調した高 速の偏向高電圧をビームに与えられるビー RFQ ムKickerの設計も行った。Kickerは、15 kV のキック電圧で、¹⁶O+ビームをターゲ ット位置において15mm 変位できるよう ^{1.0}

ビームの軌道計算は、RFQ加速器内に おいては計算機コード PARMTEQ-H^[3] を用 いて行い(Fig-2)、加速器を出た後の輸送 系においては、計算機コード MS-TR を用 い(Fig-3)、最終的に空間電荷反発力を考 慮して各コンポーネントの最適化をはかっ た。最終的にターゲット位置でのビームス ポット面積は、1.089mm² となった。

Fig-2 RFQ Nº NZE -4

- 194 -

3. 各装置の製作

製作された各QMの性能パラメータをTable-2 に 示す。

Table. 2 Parameters of quadrupole magnets

	QM1	QM2,3	
bore diameter(mm)	36	60	
core length(mm)	120	180	
max field gradient(30A)			
(kG/cm)	2.0	3.0	

Kickerについては、180mmの長さの電極板に1 5kVの偏向高電圧を100nsでスイッチングできる回 路を製作した。5VのTTLパルス信号が入力されたと きの電極間電圧の変化をFig-4に示す。

Fig-4 Kicker電圧(15kV) [上] TTLパルス(5V) [下] (100ns/div) なおTTLパルス信号は、80MHzの運転周波数を Down counterを通して得る予定である。

4. まとめと今後の課題

TIT-RFQに本照射システムを設置し、ガスターゲ ットにビームを照射してプラズマを発生させる実 験を予定している。モデル計算^[4]によりH₂(1atm) をターゲットにした場合、エネルギー付与密度 15.1GW/g、プラズマ温度 1.36eV という結果を得 ている。測定はストリークカメラ系測定装置を用 いて、プラズマの膨張等の動的振る舞い、プラズ マ温度及び電子密度の測定などを行う予定である。 なお Kickerとストリークカメラの連動試験は、東 工大V.d.G 加速器を用いて行われ成功している。

今後は、現在開発中の中多価用ECRイオン源^[5] をTIT-RFQにつなげ、まずHe⁺(2.5mA)ビームを用い て実験を開始する予定である。

参考文献

- [1] M. Okamura, Y. Oguri, K. Sasa, T. Hattori et. al
 Nuclear Instruments and Methods in Physics Research B89(1994)38-41.
- [2] M. Okada et. al:本研究会予稿
- [3] K. R. Crandall:LA-9695-MS(1983).
- [4] R. C. Arnold and J. Meyer-ter-Vehn: Rep. Prog. Phys 50 (1987) 559-606.
- [5] 服部俊幸 他:原子核研究, Vol. 37 No. 3. 57-60.

Fig-5 東工大高強度重付フビーム照射システム外観図