21 - P11

HIGH POWER TEST OF AN S-BAND ACCELERATOR UNIT FOR JAPAN LINEAR COLLIDER

H. MATSUMOTO, M. AKEMOTO, H. HAYANO, T. NAITO and S. TAKEDA

National Laboratory for High Energy Physics 1-1 Oho, Tsukuba-shi, Ibaraki-ken, 305, Japan

ABSTRACT

An 1.54 GeV S-band linac for the Accelerator Test Facility (ATF) has to inject multi-bunch beam of electrons into the damping ring. To meet the energy goal 1.54 GeV with given site constraint the accelerating gradient has to reach 33 MV/m with beam loading. The 3m-long structure obtained the maximum accelerating gradient of 52 MV/m at an input peak rf-pulse of 200 MW without any problem. At this level, an average field emission current from the structure was 0.34 nA per rf-pulse. The microscopic field enhancement factor β was 70, which was obtained with Fowler-Nordheim plots. The first rf processing time of an accelerator unit is required the 200 hours up to a SLED peak rf-power of 400 MW with rf-pulse width of 1 µs.

リニアコライダーの為のS-band高電界加速ユニットの大電力試験

1. はじめに

トリスタン, SLC, LEP等を超える衝突エネルギ ーが数百GeV~TeV領域の次世代高エネルギー物理 学の将来計画の一つとして国内においてはJapan Linear Collider (JLC)^[1]と呼ばれる日本独自の電子・ 陽電子衝突型線形加速器の計画がある。 このよう な大型加速器を現実的な長さで実現するには、よ り短い距離で高いビームエネルギー利得が得られ る高電界型リニアックが必要である。 更に, 設計 する上で考慮すべき重要なことの一つは、クライ ストンやそのパルス変調器等のアクティブな構成 要素を可能な限り少なくして大規模な加速器シス テムの信頼性を上げることである。 即ち1台の高 周波源で出来るだけ高いピーク電力を発生させ多 数の加速管をドライブすることである。 その為に は大出力クライストンの開発は勿論のこと、高電 界で使用可能な加速管,高周波パルス圧縮技術[2] 等の開発研究は必要かつ不可欠である。 これらの 高電界型リニアックの研究を効率良く行う為, 試 験加速器装置(Accelerator Test Facility, ATF)をKEK に設置した。 国内においてはKEKを中心にした大 学,産業界との共同研究ならびにDESY (ドイツ), POSTECH (韓国), SEFT(フィインランド), SLAC (アメリカ)との国際共同研究が精力的に行われて いる。

国外におけるS-band, C-band, X-band加速管の高 電界実験は既にSLACやVARIAN等, 幾つかの研究 機関において定在波型加速構造の空胴数が少ない 構造で行われていた^[3,4]。 国内における加速管の 高電界実験はKEKにおいてJLCグループが1987年 に初めて小規模な実験を行った。 その後, JLCで はマイクロ波電力200MW入力時に軸上電場勾配が 100MV/mが発生可能な出来るだけ実機に近い0.6m 長のS-band進行波型加速管構造を用いて,高電界 で加速管の内部で発生する電界放出電流と放電限 界の因果関係に的を絞って調査を行った。 これに より,

- (1)電界放出電流の大きさは加速管内部の清浄度に 依存し,
- (2)最大電場勾配は加速管の構造が支配的であることが明らかになった^[5]。
- (3)更に,高純度のOFHC-銅であっても銅の粒界間 にミクロンサイズの気孔が存在し,電界放出電 流の原因になっていることも判明した^[5]。

ここではJLCの前段加速として予定されるS-bandリ ニアックについて、開発研究のプログラムの一環 として実用化した100MW級クライストンとピーク 電力400MW級のSLED型パルス圧縮装置を使用し

-245 -

た3m長S-band加速管の高電界発生試験の総合結果 を報告する。

2. 高電場勾配型3m長加速管

ここで使用した3m長加速管はこれまでの高電界 発生試験で明らかになった全てのネガティブな要 素を改善し製作したものである。 主には加速管カ プラー部の高周波特性の調整作業による構造欠陥 やそれによる汚れの発生を避ける為、3次元の電磁 界解析計算機コード(MAFIA)を用いて詳細な寸法 設計を行い^[6],これによりNCマシンで高精度にカ プラー空胴を製作することが可能となった。 更に ,電界放出電流を低減する為ディスク部のOFHC-銅材料は全てHIP処理(注1)、[7]を施し,加工時にマ シンオイルが材料の内部に残らないようにした。 表1に加速管の主なパラメーターを示す。

表1 3m長加速管の主なパラメーター

Operation frequency	2856	MHz
Phase shift/cell	$2\pi/3$	
Electric field distribution	Constant gradient	
Structure length	3	m
Number of cell	86	
Quality factor	13,000	
Shunt impedance	60	MΩ/m
Attenuation parameter	0.57	
Group velocity	0.0204-0.0065	vg/c
Filling time	0.83	μs
Peak surface electric field (E _p)/Axial	1.9-2.1	
electric field (Ea)		

表1のパラメーターとSUPERFISHから求めた3m 長加速管の $E_{a}/E_{a} \approx 2$ を用いて最大表面電界(E_{0})は

$$E_{p} \left[\text{MV/m} \right] = 7.38 \times \sqrt{P_{in} \left[\text{MW} \right]} \tag{1}$$

で与えられる。 OFHC-銅の表面垂直電界強度(E_p) とこれによる金属表面からの電界放出電流(I_e)の関 係をあらわすFowler-Nordheim Plot (F-N Plot)は

$$\frac{I_e}{E_p^{2.5}} \approx \exp\left(\frac{-6.53 \times 10^9 \times \phi^{1.5}}{\beta \times E_p}\right)$$
(2)

で与えられる。 ϕ は銅の仕事関数, β は理想的な 金属表面からの I_e の増加係数を示すMicroscopic field enhancement factor である。

3. 加速ユニットの大電力試験

図1にATFリニアックのレギュラー加速ユニット の高電界試験装置を示す。 加速ユニットは85MW, 4.5µsクライストロン^[8], 400MW級SLED型マイク ロ波圧縮装置^[9], 2本の3m長加速管で構成する。 加速管の電場勾配(E_p, E_a)は入力マイクロ波電力 (P_{in})を計測して(1)式から求めた計算値である。

試験装置は全く高周波電力の通過を経験したこ との無い新品で構成されていたのでRFプロセッシ ングは慎重に行った。 計算機プログラムによる約 200時間の自動RFプロセッシング後に, ピーク電力 200MWが入力可能となり最大加速電場勾配が 52MV/mに到達した。 その後安定に運転できるこ とを確認した。 1度RFプロセッシングが完了する と, 大気に戻しても真空が回復後, 数時間程で 200MW入力が可能となることが分かった^[10]。 図 2にマイクロ波電力のモニター信号波形を示す。

図2 マイクロ波電力のモニター波形

図2に示したモニター波形の1番目はクライストロン出力(80MW, 4.5µs)。 2番目はSLEDと2本の加速 管からの反射電力で, SLED空胴のピーク電力の所 で約100kW程度と非常に小さい。 3番ならびに4番 目は夫々加速管の入射電力(ピーク200MW)である。 SLEDの出力は時間的に指数関数で減少するので, 図1に示した用な42~52MV/mの加速電場分布にな る。 この場合,リニアックのビームローディング によるエネルギー低減を考慮しても,ビーム加速 は3m長加速管当たり120MeVとなり,クライストロ ン1本当たり240MeVのエネルギー利得が期待でき ることになった。

4. 試験結果

夫々の加速管の下流にファラデーカップ型電流 モニターを設置し,加速管の表面電界をパラメー ターに電界放出電流 *I* を計測した。 図3にそれら のF-N Plotを示す。

図3 レギュラー加速ユニットのFowler-Nordheim Plot

2本の加速管の β は殆ど同じ70程度が得られた。 こ のことから加速管内部に電界が集中するような構 造欠陥がなく性能のばらつきが少ないことがわか る。 I_{e} は僅かに異なるが内部の清浄度は同程度に なっていることがわかる。 ここでの I_{e} は平均値で あるが、これを1 μ s幅の矩形パルスのピーク値に換 算すると、 E_{p} =104MV/mにおいても最大0.3mAの ピーク電流しか発生しないことが分かる。 この時 の軸上電場勾配 E_{a} は52MV/mに相当する。 これに より、33MV/m のビーム加速は全く問題ないといえ る。

5.まとめ

加速管の電界放出電流を低減し,高電場勾配で 安定な運転を可能とする為,3次元の電磁界解析計 算機コード(MAFIA)によるカプラー部の寸法決定, OFHC-銅材料のHIP処理ならびに清浄な環境での 組み立て等の高電場勾配型加速管製作のフローを 確立し[11], これにより高電場勾配における安定な 運転の実現と電界放出電流を大幅に軽減させるこ とに成功した。ここで使用した400MW級高周波 源は,全てJLCの開発研究のプログラムで実用化 に成功した100MW級クライストロン,400MW級 SLED型パルス圧縮装置,ピーク電力200MW級パル ス変調器^[12]ならびに400MW級大電力導波管部品で 構成され,これらは現在,世界で入手できる最強 のものである^[13]。

ATFリニアックは、現在加速器として認められ ている150MeVの入射部のみビーム加速を行ってい る。 ここでは主に加速電圧200kVの熱電子銃を用 いた2.8ns間隔のマルチバンチビーム取り出しやビ ーム診断装置の開発と性能評価ならびにビームエ ミッタンス測定をおこなっている。 主加速器の設 置は'95 年度の前半に完了することを目標としてい る。

注1 : HIP (Hot Isostatic Pressing), 圧力容器中で高温と高圧力 を利用した金属材料の鍛造技術。本加速管のOFHC-銅は 800℃, 2,000kgf/cm²(N2ガス)で2時間処理をおこなった。

参考文献

- JLC group, KEK report 92-16, A/H/M, National Laboratory for High Energy Physics, Japan, December 1992.
- [2] Z. D. Farkas, H. A. Hogg, G. A. Loew and P. B. Wilson, Proc. 9th Int. Conf. on High Energy Accelerators, SLAC (1974) p. 576
- [3] Eiji Tanabe, IEEE Trans. NS-30, No. 4, (1983) 3551
- [4] G. A. Loew and J. W. Wang, SLAC-PUB-4845, January 1989
- [5] H. Matsumoto, M. Akemoto, H. Hayano, T. Naito, S. Takeda and S. Yamaguchi, KEK Preprint 92-84, August 1992, XVth Int. Conf. on High Energy Accelerators, Hamburg, Germany
- [6] S. Yamaguchi, Proceedings of III Workshop on JLC, KEK, February 18-29, 1992
- [7] H. Matsumoto, M. Akemoto, H. Hayano, T. Naito and S. Takeda, Proc. of Particle Accelerator Conference, May 1991, IEEE, New York, p. 1008
- [8] H. Yonezawa, S. Miyake, K. Gonpei, K. Ohya and T. Okamoto, Proc. 14th Int. Conf. on High Energy Accelerators, Tuskuba, JAPAN, 1989, p. [1177]/219-224.
- [9] H. Matsumoto, H. Baba, A. Miura and S. Yamaguchi, NIM A330 (1993) 1-11
- [10] S. Morita, 本研究会
- [11] H. Matsumoto, S. Takeda and S. Yamaguchi, KEK Proc. 93-10, August 1993, p270-274
- [12] M. Akemoto and S. Takeda, Proc. of the Linear Accelerator Conference, Albuquerque, USA, 1990
- [13] S. Takeda, M. Akemoto, J. Urakawa, K. Oide, T. Naito, H. Hayano and H. Matsumoto, KEK Proc. 93-10, August 1993, p53-58