21-P21

Beam Ttansport of PF 2.5-Gev Electron Linac (II)

T.Shiraga, K.Tamiya, A.Asami, T.Suwada^{*}, K.Furukawa^{*}, T.Kamitani^{*}, and H.Kobayashi^{*}

Naruto University of Education

Takashima, Naruto-Cho, Naruto-Shi, Tokushima-Ken 772 National Laboratory for High Energy Physics (KEK)

1–1 Oho, Tsukuba–Shi, Ibaraki–Ken 305

ABSTRACT

It was continued to study how to correct the beam transport system of the above linac when a klystron became off. It was shown that the correction could be successfully applied by adjusting the focussing strength of Q-magnets simply in proportion to the beam energy difference produced by the switched off klystron.

PF2.5Gevリニアックのビームトランスポート(Ⅱ)

1. はじめに

PF2.5Gevリニアックは、PF放射光リングに 陽電子ビームを、トリスタン蓄積リングに電子と陽電 子ビームを供給している。放射光リングもトリスタン 加速器も一端運転を開始すると、長期間にわたり常時 稼働状態にある。それで、2.5Gevリニアックに何ら かの異常が起きてビームが停止した場合、一刻も早く ビームを復旧するよう、強い要求がある。ビームが停 止してしまう主要な原因の一つは、クライストロンの 異常である。クライストロンやその電源系統では、保 護のためのインターロック系があり、その作動で停止 する。多くの場合ただちに復旧できるが、時には時間 がかかる場合が生ずる。そのためいくつかのクライス トロンを待機 (Stand-by)状態にしておき、その一つを 作動状態に切り替えて運転を継続する。通常この待機 状態にあるクライストロンは最終(第5) セクターか 第4セクターに置かれている。それで、もし上流でク ライストロンが停止した場合に、ビームが待機状態に あるクライストロン位置まで到達できないことが起こ る。この場合にはビームトランスポート系を再調整す るほかない。

前回の報告 [1] で、一例として第1セクター4番 目のクライストロン(以下Kly1-4)が停止した場 合について述べた。そこでは、停止したクライストロ ン直後のQ磁石(QM1-4)から第2セクター中間 の磁石(QM2-2)まで、ビームのエネルギーが減 少したぶんを考慮しただけ収束力を弱くするよう再調 整を行った。その結果は予想に反して、ビームを加速 器終端まで通すことができなかったことを報告した。

今回は、その後この問題について行った研究の結果 について報告する。

加速器軸方向の距離(m) 図ー1 QM1ー4からQM2ー2まで補正したときのビームエンペロープ

2. クライストロン停止時のビームトランスポート 調整

Kly1-4が停止し、QM1-4からQM2-2 までのQ磁石に補正を施した時のものを図-1に示す。 ~300mでビーム径は10mmを越えており、ここ で失われることになる。これくらいまで補正すると、 後は充分ビームを加速できるのではないかと予想して いたので、此の結果は意外であり、初期パラメータの 設定上の問題なども疑われた。そこで此の原因の検討 を行った。

図-2(a)に、加速器に沿う軸方向の位置と、 X-方向のビームサイズとの関係を、定常運転時、Kly 1-4停止時、QM1-4、1-5の2台を補正した 場合、およびQM1-4からQM2-2まですべて (トリプレット7台)補正した場合の4つの場合の図 を示す。図からわかるように、Kly1-4停止時には 80m (~QM2-1) くらいから定常時からのずれ が大きくなり、~120mの位置で(~QM2-4) その振幅は8mmくらいに達している。QM1-4、 QM1-5の2つの補正で、~120m位置の振幅は 5mmくらいまでに減少するものの、定常運転時に比 べてまだかなり大きい。しかし、QM1-4からQM 2-2まで補正すると、軌道はぐっと定常運転時のも のに近ずき、~180m以降殆ど両者の差は無くなっ ている。

同様に、Y-方向の運動についてまとめたものを、 図-2(b)に示す。此の場合にもX-方向と同様で、 Kly1-4停止時の軌道が、Q磁石の補正をQM1-4、1-5の2台、QM1-4から2-2までの7台 までと進めていくに従い、定常時の軌道に漸次近ずい てくる様子が良くわかる。ただ、X-方向の場合と異 なって、120mくらいまでかなり似た軌道になった ものが、QM1-4から2-2まで補正したものでも、

加速器軸方向の距離(m) 図ー4 QM1-4からQM3-4まで補正したときのビーム

の後次第に定常時のものから遠ざかっていく様子が 示されている。

このように、X、Y-方向のビームの様子を仔細に 検討してみると、Q磁石の補正そのものは期待どおり 有効に作用していることがわかる。従ってこのような 補正をQM2-2まででなく、さらに下流側に継続し ていけば、もっと定常時の軌道に近づけ得ることが予 想される。

そこでさらにQM2-8まで補正した場合のビーム エンペロープを図ー3に、QM3-4まで補正した場 合を図ー4に示す。QM2-8までの補正でビームは 加速器終端まで到達している。QM3-8まで補正す ると、定常時のものと殆ど変わらなくなる。

3. 検討と今後の課題

最初、QM1-4からQM2-2まで補正するくら いで充分であろうと考えたのは、加速器のエネルギー アクセプタンスのみを考えた為である。実際、QM 2-4までにエネルギー減小分だけでなく、さらに適 当な修正を加えれば、ビームを終端まで輸送できるこ とは、前回示した。当然のことではあるが、エネルギ ーだけでなく、変位*運動方向のアクセプタンス内に 入る必要がある。此の条件を満足させるためには、前 述のようなエネルギーのみの補正は、さらに継続する 必要があった。

実際には、ビームは必ずしも中心を通っていないた め、Q磁石を変えるとビーム位置がずれるなどの問題 がある。いずれにしても、今後実際の加速器で検討結 果を確認することが必要である。

参考文献

[1] T.Shiraga et al. Proc. of the 18th Linac Meeting in Japan, Tsukuba, (1993)380-382