Proceedings of the 20th Linear Accelerator Meeting in Japan (September 6-8, 1995, Osaka, Japan)

α Beam Acceleration in the KEK PS Injector

K. Ikegami, A. Takagi, Z. Igarashi, C. Kubota, *Y. Mori

National Laboratory for High Enerugy Physics(KEK) 1-1 Oho,Tsukuba-shi Ibaraki-ken,305,Japan *Institute for Nuclear Study,University of Tokyo Midori-cho,Tanashi-shi,Tokyo,188,Japan

ABSTRACT

Many experiments have been carried out for helium ion beam acceleration in the KEK 12GeV Proton Synchrotron throughout in 1994. A helium beam has been successfully accelerated(1). The injector of the 12GeV Proton Synchrotron, the 20MeV Proton Linac is operated in 4π mode acceleratin by the same scheme of the deuteron accelertion(2), the 750keV Pre-Injector has He⁺ ion source of multicusp type and a gas stripper cell installed in the low energy beam transport(LEBT). Maximum value of He²⁺ ion beam current at the exit of the Proton Linac was 1.6mA.

In addition helium-3 beam acceleration has been tried in the 20MeV Proton Linac in 4π -mode acceleration. ³He²⁺ ion beam current of 1.8mA was observed.

KEK陽子シンクロトロン入射器でのαビーム加速

-22 -

1.はじめに

KEK12GeV陽子シンクロトロンでは、 その多機能化として重陽子イオンビームの加速 に続いて、1994年にヘリウムイオンビーム の加速実験及び、共同利用物理実験者へのこの ビームの供給を行った。これは、通常の陽子加 速運転に対して、PS入射器では次の点を変更 した。ひとつは、従来の負水素イオンビームと の併用運転の必要から、2台ある前段加速装置 の2号機にカスプ型のヘリウムイオン源を据え 付け、そこで生成した1価のHe+ イオンビー ムを、前段加速器750kV加速管で加速した 事、また前段ビームラインに新設したチャージ ストリッパーで、 その1価のビームを2価の He²⁺イオンビームにして20MeV陽子リニ アッに入射そして加速した事である。この時こ の陽子リニアックでは、陽子ビームの2πモー ドに対して4πモード加速方式とし、重陽子と 同様な方法で加速を行なっている。

2.前段加速器でのHe⁺ ビームの加速 ヘリウムイオン源は、750kV高圧ステー ション内に設置した50kVの高圧ステーショ ン上に取り付ける方式としたことから、構造が 簡単なカスプ型のイオン源(図-1)とした。 イオン源より取り出した50keVの初期加速 後のビームは、アインツェルレンズにより、7 50kV加速ギャップに集束させる方法で最初 セットアップを行った。イオン源のビーム電極 は、中間電極を持った3枚構造の多孔型電極 (図-2)とし、引き出し口総面積は約10m m² である。

図-1 Heイオン源(初期のビーム電極は、 抵抗分割電圧引加の中間電極を擁した3枚構成)

図-2 イオン源多孔型電極(アノード)

このシステムでの獲得ビーム強度は、アイン ツェルレンズ直後のファラデーカップ(イオン 源からの距離260mm、口径58mm)に於 いて20mAのビーム強度を得た。しかし、ア インツィルレンズを入れない状態ではこのビー ム強度が半減してしまうことから、かなり大き なエミッタンスであることが予想された。そこ でこのファラデーカップにスリットを取り付け、 ビーム軸から上下に移動し、それぞれの位置で のビーム強度を測定することで概算のエミッタ ンスを求めた。その結果アインツェルレンズを 入れない状態でのプロファイルは、ピーク強度 の90%で幅57mmとなり、口径18mmの イオン源接地電極の大きさが初期ビームサイズ とすると、予想されるエミッタンスは規格化サ イズで4.53π mm·mrad であった。エミッタンス 縮小化の為、ゼノンガス導入による空間電荷中 和を試みたが効果は無かった。しかし、イオン 源電極の形状変更、中間電極の電位調整により プロファイルの減少が観られた。この時のファ ラデーカップで測定したイオンビーム強度は2 0mA弱、プロファイルは幅46mmであった

この状態に於いて750kV前段加速器でイ オンビーム加速をテストを行った。加速直後の カレントモニター(CM-1)でこの時5.3 mAが最大強度であり、そこに来る前にかなり のイオンビームが失われている。

そこで、できるだけ750kV加速ギャップ に近い所での多量のイオンビームの生成を求め イオン源を加速管直付けのシングルギャップ多 孔電極方式とした。シングルギャップは14. 5mm、ビーム加速電圧48kVとしCM-1 で9.8mAのイオンビーム強度を得た事から、 これを今回の最終セッティングとした。この時 のイオン源・加速管の配置を図-3に示す。

図-3 イオン源・加速管の配置

 チャージストリッパーによるHe²⁺の生成 チャージストリッパーは、アルゴンガスによ る方式とカーボンフォイルによる方式の2通り をテストした。

750keVビーム輸送路(図-4)におい て、ガスチャージストリッパーは最初の偏向磁 石直後に設置した。このストリッパーのカナル は、内径30mm全長600mmあり、1価か ら2価へのヘイウムイオンの最大荷電変換率は 粒子数で49%であった。これに対して、長い 直線ビーム路の上流に設置したカーボンフォイ ル方式は、20mm ϕ 厚さ10 μ g/cm²の フォイル、30mm ϕ 厚さ20 μ g/cm²フ ォイル、それぞれ考察要件によって荷電変換率 は変わるが50%程度であると思われた。

次に実際リニアックで加速すると、カーボン フォイルではリニアックの最大捕獲率を得たコ ッククロフトの電圧は、ガスの759kVに対 して10μg/cm²のフォイルで16kV、

-23-

20µg/cm²のフォイルで24kV高くなった。これに対してガス方式では750kVビ ームラインの透過率が落ちたが、フォイル方式 はコッククロフト電圧を昇圧しなければならな いということから、ガス方式での運転の方を採 用とした。

4. 陽子リニアックでのHe²⁺ビーム加速

KEK陽子リニアックでは、D+ ビーム加速 と同様に、フルストリップされた2価のヘリウ ムイオンを、マスチャージレシオが同じことか ら4πモード加速方式で加速できる。但し、入 射エネルギーは、 D^+ の場合555kV($\beta =$ 0.024) としたが、今回前段加速器では1価の He⁺ を加速するため、加速エネルギー760 kV、D⁺ に対応すると380keV (β=0.0 2)の入射エネルギーにしなければならない。こ の入射エネルギーによるイオンビーム強度は、 760keV加速直後のHe⁺ ビームで8.8 mA(CM-1)、ガスチャージストリップ直 後のHe²⁺ビームで8.2mA(CM-3)、 陽子リニアック入り口において6.0mA(C M-6)、20MeV加速後は、25%以上の 捕獲効率を保って1.6mA(CT-1)のビ ーム強度が得られた。20MeVでのエミッタ ンスは規格化サイズで縦方向3.76πmm·mrad、 横方向3.0πmm·mradと妥当な値であった。尚こ の時のイオン源の設定値は、初期加速電圧52. 8kV、アーク電流・電圧 20A・60V、 Heガス量7sccmである。

図-5 20MeVリニアックHe²⁺ビーム

次にこの陽子リニアックに於いて、 4π モード加速方式でヘリウム3の加速テストを行った。 ³H e²⁺ビーム加速に備えて、 β =0.02のリニ アック入射条件値に、コッククロフト電圧、ビ ーム路電磁石磁場を設定しなおし、リニアック 透過後それらの微調整を行った結果、コックク ロフト電圧567kV、CM-1で10mA、 CM-3で8.4mA、リニアック入り口で7. 0mA、20MeVCT-1で1.8mAのビ ーム強度を得た。これにより、マスチャージレ シオが異なるイオンについても、この陽子リニ アックで問題なく加速することがわかった。

5. 結果及び今後の課題

カスプ型ヘリウムイオン源使用の前段加速器 及び陽子リニアックでのヘリウムイオンの加速 結果は、KEKPSへのヘリウムイオンの入射 器としての機能を十分に持ち合わせていること がわかった。今後このイオン源で、より高強度 のイオンビームを得る為には、750kV加速 管加速ギャップ直前にイオン源を直付けするこ とが良いが、より多機能化を狙った750kV 高圧ステーションとする為、イオン源側の加速 管内に四極磁石を設置し、これに対応するよう 現在改良している。これにより、イオンビーム が加速ギャップに当たることによる加速管の放 電を抑えられることも期待される。またこれは、 高圧ステーション内での50kV初期加速で、 加速管の負荷を下げられる。他のビーム強度増 加手段は、750kV加速ギャップを今回の低 電場勾配の長いギャプ長から短縮することが考 えられ、既に、ギャップ間隔を1080mmか ら720mmに短縮した。

他方において結果として、³He²⁺ビームが 陽子リニアックで問題無く加速されたことは、 12GeV陽子シンクロトロンの多機能化を推 進する上で、前段加速器としてのタンデム加速 器を使用活用する事も今後考慮しなければなら ない。

6. REFERNCES

(1) I.Sakai, "Helium Beam Acceleration in the KEK Proton Synchrotron with A Newly Developed Injection System for Positive/ Negative Ions", Proc. 1995 Particle Accelerator Conf.

(2) Y.Mori, "Acceleratin of deuteron beam in the KEK proton synchrotron", Proc. 1993 Particle Accelerator Conf.Vol.5,3754-3756 (Washington,1993)