

GAIN MEASUREMENT OF AN INFRARED FREE-ELECTRON LASER AT THE INSTITUTE OF SCIENTIFIC AND INDUSTRIAL RESEARCH, OSAKA UNIVERISTY

Okuda S., Ishida S.*, Honda Y., Kato R. and Isoyama G.

The Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka, Ibaraki, Osaka 567, Japan

ABSTRACT

Free-electron laser (FEL) experiments have been conducted with the 38-MeVL-band electron linac at the Institute of Scientific and Industrial Research (ISIR), Osaka University. The first lasing was observed in 1994 at wavelengths of 32-40 μ m. In the present work the behavior of light in the optical resonator has been investigated by making time-resolved measurements of the output light from the FEL at a wavelength of 40 μ m. The output light was detected with a Ge:Be infrared detector which has a time resolution of 170 ns. The net gain of the FEL and the loss of the optical resonator for one round-trip were measured as 58% and 6.2%, respectively. The highest output energy of the FEL in a micropulse so far obtained in the experiments is 75 μ J.

阪大産研の 赤外自由電子レーザーの増幅率の測定

1. はじめに

大阪大学産業科学研究所では、高強度の電子ビームを加速できる放射線実験所の38 MeV Lバンドラ イナックを用いて、赤外自由電子レーザー(FEL) の開発研究を行っている。これまでの研究で、単 バンチビームからの自発放射光増幅型FELを観測 した¹⁾。また発振実験では、マイクロ波装置の動作 条件を調べてマルチバンチビームを発生させ、平 成6年3~4月の実験において、波長32~40 µmで最 初の発振に成功した²⁾。本研究では、波長40 µmで FELの最大出力を調べる実験を行うと共に、高速 型の赤外光検出器を用いてFELの増幅率を測定し た。

2. 実験条件

FEL実験装置の概念図を図1に示す。この図で 光計測系の配置は、分光器によってFELの波長ス ペクトルを測定する時に使用した配置である。発 振実験で用いたマルチバンチビームの条件を表1に 示す。電子銃を直径8 mmの小口径の熱陰極

(Y646B, EIMAC)を持つものと交換した結果、加 速後のマルチバンチビームのエミッタンスは通常

*Present Address: Nissin Electric Co., Ltd., Minamiku, Kyoto 601, Japan

の値の約2分の1になった。電子銃からパルス幅4 μs、ピーク電流600 mAの電子ビームを、加速エネ ルギー100 keVで入射した。電子銃の後に2台の12 分の1サブハーモニックプリバンチャー (1/12-SHPB)と1台の1/6-SHPBがある。電子銃から 入射する電流のピーク値は単バンチビームのそれ に比べて10分の1以下と低いので、2番月の 1/12-SHPBと3番目の1/6-SHPBだけを運転する。3 番目の1/6-SHPBはバンチ列の通過で誘起されるマ イクロ波の時間変化を打ち消すように動作させる。 電子銃より入射するビームのパルス幅を4 usと2 us とに変えた場合の、加速後の電子ビームのエネル ギースペクトルの測定結果を図2に示す。後半のパ ルス幅1.8 µsのビームが比較的エネルギーがそろっ ており、ウィグラーへ輸送される。このパルス幅 は光共振器中での光の往復時間の49倍である。こ れはFELの増幅回数となる。加速器システムおよ び各要素の動作条件の詳細は文献3で報告した。

FELと光共振器のパラメータを表1に示す。ウィ グラー内の3ケ所にビームプロファイルモニタを設 置した。ここでのビームの直径は約5 mmであった。 光共振器の反射鏡は銅基板に金をコートしたもの である。下流側の反射鏡の中央には、光共振器か らFEL光を取り出すために直径1 mmの穴を設けて ある。この反射鏡の2方向のあおり角は、ステッピ

ングモーターを使い遠隔で調整できる。反射鏡の あおり角の変化を高精度でモニタするために、 He-Neレーザーによる診断システムを設けた。この レーザーは分割して、検出器までのFELの光路を 示すためにも利用した。FEL光を真空容器から取 り出すための真空窓は厚さ5 mmのKRS-5の板を用 いた。光の透過率は波長40 µmで42%である。出力 光は、金をコートした平面鏡と、凹面鏡を用いて、 加速器室から検出器が置かれた計測室へ輸送する。 空気中の水分による光の吸収を防ぐために、光路 にプラスチック製のパイプを用いて中に乾燥窒素 を封入した。 遠赤外光を検出する液体He冷却 Ge:Be光検出器の感度は、黒体光源およびウィグラー からの自発放射光を用いて実験的に調べた。従来 から使用していた時間分解能3 µsの検出器に加え て、今回の実験では高速型検出器を用いた。単バ ンチビームから放射される自発放射光増幅型FEL の単パルス光(時間幅30 ps程度と推定される)に 対する高速型検出器の出力波形を図3に示す。この 図より高速型検出器の時間分解能は170 ns (FWHM)であることがわかる。FELの強度を計測 可能な値まで減衰させるために、光路にテフロン シートを挿入した。

3. FEL発振実験の結果と考察

波長40 μmにおいて、FELの出力を測定しなが ら加速器の運転条件を変えた。光共振器鏡から取 り出されたFELのエネルギーの最大値は、マクロ パルス当り12 mJであった。この時ミクロパルスで の最大値は75 μJである。

発振波長40 μmのFELの出力光の時間スペクト ルを高速型の遠赤外光検出器で測定した結果を図4 に示す。この波形の立ち上がりから、FELの正味 の増幅率(利得)が求まり、電子ビームが通過し 終えた後の減衰から光共振器中での光の損失が得 られる。測定結果から、正味のFEL利得は58%、光 の損失は光共振器中での1往復に対し6.2%と計算さ れた。この正味の利得と損失の和64%は、損失が ない理想的な条件でのFELの利得を表すと考えら れる。この値は、2次元モデルに基づく計算で得ら れた利得70.6%と良く一致している。

FELのミクロパルス波形は観測されていないの で、FELのピーク出力は直接には得られない。こ こでミクロパルス幅の推定を行う。FEL光がミク ロパルス全体にわたりコヒーレントになった場合 に、そのミクロパルス幅から波長スペクトルの幅 が決まる。FELの波長スペクトルの半値幅に、実 測値である1.1%を適用すると、ミクロパルス幅と して9 psが得られる。このミクロパルス幅を仮定 すると、実験で光共振器から取り出されたFELの ピーク出力の最大値は8.3 MWとなる。

発振実験中の電子ビームのミクロパルス形状は 測定していない。加速器の運転条件によってFEL の出力は大きく変化するので、今後パルス形状を はじめとするビームについての精度の良い計測が 必要である。

4. おわりに

産研Lバンドライナックのマルチバンチビーム によって波長32-40 μmでFELの発振実験を行った。 高速型の遠赤外光検出器を用いてFELの増幅挙動 を調べた結果、波長40 μmでの正味の利得は58%、 光共振器の損失は6.2%であった。波長40 μmで光 共振器から取り出されたFELの最大のエネルギー は、マクロパルスで12 mJ、ミクロパルスで75 μJ

図3 波長40 μmのピコ秒単パルス光に対するGe:Be 赤外検出器の出力波形

図4 発振波長40 µmでのFEL光の時間スペクトル

である。この時、ミクロパルスのピーク出力の推 定値は、8.3 MWである。

産研の装置の条件は、比較的長い波長でのFEL 実験に適している。今後さらにFEL特性を詳細に 調べると共に、波長域の拡大や安定性の改善をは かる予定である。

参考文献

- S. Okuda et al., Nucl. Instr. and Meth., A331 (1993) 76.
- [2] S. Okuda et al., Nucl. Instr. and Meth., A358 (1995) 244.
- [3] S. Okuda et al., Nucl. Instr. and Meth., A358 (1995) 248.

-71 -