Proceedings of the 20th Linear Accelerator Meeting in Japan (September 6-8, 1995, Osaka, Japan)

CONSTRUCTION AND DEVELOPMENT OF AN UV FREE ELECTRON LASER UNDER THE COOPERATION OF NIHON U, KEK, PNC, ETL AND TOHOKU U

Y. Torizuka, K. Hayakawa, T. Tanaka, K. Sato, M. Iijima, J. Hatomi, Y. Matsubara, I. Kawakami, I. Sato^{*}, S. Anami^{*}, S. Fukuda^{*}, T. Kurihara^{*}, T. Kamitani^{*}, S. Ohsawa^{*}, A. Enomoto^{*}, S. Toyama^{**}, M. Nomura^{**}, Y. Yamazaki^{***}, T. Yamazaki^{***}, K. Yamada^{***}, M. Ikezawa^{****}, Y, Sibata^{****} and M. Oyamada^{****}

Atomic Energy Research Institute, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101 JAPAN

ABSTRACT

The construction and development of an UV free electron laser has started under the cooperation of Nihon U, KEK, PNC, ETL and Tohoku U. The project requires a 125-MeV S band electron linear accelerator for the fundamental mode operation in the UV region and produces a high brightness electron beam at a micropulse of 70pC and 3.5ps with a macropulse width of $10-20 \ \mu$ s and 200mA in average current. We have chosen the undurator period of 2cm and the number of period of 100 for the oscillation of a wave length of ~ 300nm.

日大、高工研、動燃、電総研、東北大紫外線領域自由電子レーザ協力開発

1 はじめに

自由電子レーザは、通常のレーザに対して、 波長可変、大出力を特徴としており、現在、 赤外・遠赤外領域では、実用の域に達してい る。自由電子レーザが大きく期待されている のは、紫外・軟X線等の短波長領域で同位体 分離、光化学反応、物質科学、生命科学への 応用、医学治療への応用等があげられる。

自由電子レーザの最初の増幅・発振が行われて以来、すでに20年近くになるが、短波長化が進まないのは、電子ビームに対する厳しい条件があるからである。我々は基本波でレーザを発振を行うために電子ビームを125MeVに選んだ。エミッタンスやエネルギー幅が入射器で決まると考えると高エネルギー電子はビーム条件を緩和する。アンジュレータその

他の設計製作が容易になる。高調波によるレ ーザ発振と比較するとゲイン出力等でも大分 有利である。本格的実用的な紫外自由電子レ ーザを目指している。

我が国では、官民合同の自由電子レーザ研 究所FBLIが関西地区に設立された。赤外及び 紫外領域の自由電子レーザを開発し、産業界 が利用する構想である。この他に、原研東海 の超伝導ライナックによる自由電子レーザ、 動燃大洗の大電流CW加速器のレーザ計画等 がある。一方ここに述べる自由電子レーザ開 発計画は、日大原研、高工研、動燃、電総研 東北大学の研究資材と開発能力を組織化して 紫外領域の大出力レーザを開発し、利用する ことを狙ったものである。

- ** Power Reactor and Nuclear Fuel Development Corporation
- *** Electrotechnical Laboratory
- **** Tohoku University

^{*} National Laboratory for High Energy Physics

2 自由電子レーザの目標値

開発目標の自由電子レーザの加速器、光共 振器、レーザ出力の値は次の表1のようになっている。

表1 自由電子レーザの目標値

電子ライナック

エネルギー	. 6	0~125MeV
周波数		2856MHz
マクロパルス幅		5~20µs
マクロパルス繰返し		1~12.5Hz
マクロパルス平均電流		2 0 0 m A
ミクロパルス電流		20 A
ミクロパルス幅		3.5ps
ミクロパルス長		1 m m
ミクロパルス間隔		350 p s
規格化エミッタンス	10	πmm•mrad
エネルギー幅		< 0.25%

光共振器

発振波長	300 n m
アンジュレータ周期長	2 c m
アンジュレータ周期数	100
アンジュレータ周パラメータK	0.75
光共振器長	~ 4 m
ゲイン	> 5 0 %
立上がり時間	< 3 µ s

レーザ出力

ピーク出力	>10MW
平均出力	>1₩

以上のパラメータの選択には次のような根拠 がある。

自由電子レーザの発振には光共振器内で入 射された電子パルスと共振器を往復する光パ ルスが空間的及び時間的に重なり合って相互 作用することが基本である。発振波長を入、 アンジュレータの中央での光パルスの半径を wo、Rayleigh長をZとすると、

$$\pi \mathbf{w}_0^2 = \lambda \mathbf{Z} \tag{1}$$

ここで、Z = L / 2でLはアンジュレータの 長さである。表1の数値から

$$\mathbf{v}_0 = 0.3$$
mm

(2)

となる。光パルスの断面積は $3 \times 10^{-7} \text{ m}^2$ である。

光ビームの傾き角θは

$$\theta = \frac{\lambda}{\pi \mathbf{w}_0} \tag{3}$$

従ってエミッタンスは

 $\varepsilon = \lambda$ (4)

規格化エミッタンスENは

$$\varepsilon_{\rm N} = \beta \ \gamma \ \varepsilon$$
 (5)

エネルギー125MeVに対し

$$\varepsilon_{\rm N} = 23\pi \,\rm mm \,\,mrad$$
 (6)

なる。

ビームのエネルギー幅はアンジュレータの自 然光の幅

$$\frac{\Delta \omega}{\omega} = \frac{1}{2N} \tag{7}$$

から求めた。すなわちω∝γ²から

$$\frac{\Delta \gamma}{\gamma} = \frac{1}{4 \,\mathrm{N}} \tag{8}$$

となる。 N=100に対しては

$$\frac{\Delta E}{E} = 0.25\% \tag{9}$$

表1から電子ビームのパルス幅は3.5ps、 長さ 1mmで位相では3.5 に相当する。電子パ ルスと光パルスを 10%以内の精度で重ねるこ とを要求するとビームの位相変動を 0.35 以 内におさえる必要がある。クライストロンの 位相変動はパルス電圧の変化 Δ V / V = 1% に対して8 と推定されている。これからパル ス電圧の変動は

$$\frac{\Delta V}{V} = 0.05\% \tag{10}$$

以内が目標値になる。

3 構成

図1にライナック本体、ビーム輸送系、ア ンジュレータ、光共振器の構成図を示した。 30MWのクライストロンを2本用い、通常運転 ではパルス幅は10μsである。第1のクライス トロンのrfパワーの1/4 はrf電子銃の空 洞に供給し、残りの22MWのパワーは、まず 0.3mの加速管に続いて4mのレギュラーの加速 管に供給する。同じパワーの第2のクライス トロンは出力を2分割し、それぞれ4m管にr fパワーを供給する。その結果、全加速エネ ルギーは125MeVになる。20µsのパルス幅のと きはクライストロンパワーは15MW程度に低下 すると考えられるので、全体の加速エネルギ ーは90MeV 程度である。ライナックを出た後 のビームは出口にある3個のQマグネット、 2台の偏向電磁石の中間に置いてある4個の Qマグネットによって2mのアンジュレータの 中央で約0.3mmのビーム半径に収束される。

Electron b

図1 ライナック本体、ビーム輸送系、アンジュレータ、光共振器の構成

4 開発研究項目

紫外自由電子レーザはこれから開発し利用 する分野である。従来型の電子銃では表1の 性能を満たすことができないのは明らかであ る。そこで、rf電子銃を開発しなくてはな らない。LaB₆を熱陰極に用いる.大きな問題 は、rfの半周期180°の前半の0~95° の位相で放出された電子は加速され空洞の外 に出るが、後半の95~180°の電子は途 中で位相が逆転し、電子がカソード方向に逆 流してカソードを叩き、マクロパルス電流が 上昇するバックボンバードメントの現象であ る。

前回の報告では対策として2個の空洞を連 結する方式をとりあげたが、これは全く効果 がないことがわかった。現在は単空洞で磁場 を用いて逆方向電子の軌道をカソードからそ らす方式を採用している。表2にバックボン バードメント電子について解析した結果を示した。この表の第1列はバックボンバードメント電子の初期放射位相である。第2列は10°間隔の電子数、第3列はバックボンバードメント電子ルギー、第4列はその平均エネルギーである。これらは全て電離損失によるものと見なすことができよう。第5列はスルギーを飛程である。第6列は平均査をで割った値である。第6列は平均積をで割った値である。最後の列は150Gの磁場によりバックボンバードメント電子が移動する距離である。電離損失/cm³が大きい低エネルギー電子を磁場で取り除くことは困難であることがわかる。

そこで、例えば図2に示す様な短冊形のカ ソードの形を考え磁場によって電子が振られ る方向に沿って放出、非放出面を交互に並べ たものをテストすることを準備中である。

表2 直径2.5mm øのLaB₈カソードについて

1 r f 周期当りの放出全電荷数7×10°個の場合のバックボンバードメント電子について解析した結果

f = 2856 MHZ duty factor = 2.5 × 10⁻⁵

initial	number of	back-	average	range	ionization	diflected
emission	electron	bombardment	energy		loss	by the field
phase	$\phi \pm 5^{\circ}$	energy				(150G)
ϕ	$\times 10^{8}$	k e V	W	c m	W/cm ³	m m
100	- 5	690	3. 9	1. 0×10^{-1}	813	6.4
110	4.8	490	2.6	6. 6×10^{-2}	821	4.2
120	4. 7	310	1. 7	3. 25×10^{-2}	1090	2.6
130	4. 3	a de la fra <u>1</u> °70, la su francia d	0.84	1. 4×10^{-2}	1250	1.4
140	4	85	0.39	4. 56 \times 10 ⁻³	1782	0.6
150	3.4	31	0.12	8.13×10^{-4}	3075	0.2
160	2. 7	6. 7	0.02	5. 4×10^{-5}	7716	0.037
170	2.06	0.48		•		

1

in the st		diade f 18 4	an The	
-	es de ser	a sa	e si ka si ka	
STREE.	N-SALLE			
akingata	10. NY 19	A. 1996	(2.00 Mars	
and the	5.0 M & R	a kir tekn	in di Sedin	
- Wassesh	e frieft k	K PA IN P	k H e Gereite	
化三硫酸合物		is Andre	(* fanss	
	de altre de	4 6 4 4 5	dar avien	

図2 短冊形カソード