Proceedings of the 20th Linear Accelerator Meeting in Japan (September 6-8, 1995, Osaka, Japan)

HIGH-POWER TEST OF THE 432 MHz DTL

F. Naito, S. Anami, Z. Igarashi, T. Kato, M. Kawamura, T. Kubota, T. Kubo, K. Kudo, K. Morozumi, M. Ono, E. Takasaki, T. Takenaka, K. Yoshino and Y. Yamazaki

National Laboratory for High Energy Physics, KEK 1-1 Oho, Tsukuba-shi, Ibaraki-ken, 305 JAPAN

Abstract

We carried out the high-power test for a model of 432-MHz Drift Tube Linac (DTL) for the Japanese Hadron Project at KEK. High-power rf enters the DTL through a co-axial input coupler that has a disk-type ceramic window. Maximum input power under the 3 % duty operation, about 1.2 times the design value, was achieved without any troubles.

432MHzDTLの大電力試験

1. 序

高エネルギー物理学研究所では大型ハドロン計画 用1GeV陽子リニアックを構成する各部の開発を 行っている。その一環として432MHzアルバレ 型ドリフトチューブリニアック(以下DTLと略す) の大電力モデルを製作した。

本モデルの仕様を表1に示す。本モデルはDTLの ビーム入射部であり、構造が最も込み入っており、 かつビーム特性への影響の大きい部分でもある。

本DTLは完成後、RFQとMEBTの下流の ビームラインに移設され、水冷管、導波管、真空ポ ンプ等が整備された。そして94年の夏に最初の大 電力試験を実行した。なお機械的な特性や小電力試 験の結果は昨年の本研究会[1]で既に発表されてい る。 従って以下では大電力試験の結果[2]を報告す る。

2. 大電力試験

今回の試験では当然ながらタンク内部は真空であ る。排気は250 l/sのイオンポンプと500 l/sのターボ 分子ポンプで行った。昨年夏の大電力試験の段階で は到達真空度は、タンク内で3x10⁻⁷ torr であり、イ オンポンプのすぐ上では3x10⁻⁸ torr であった。(現 在ではさらに当時の半分位まで圧力は低下してい る。)

表1.432MHzDTL大電力モデル	
入射エネルギー	3 MeV
出射エネルギー	5.4 MeV
周波数	432 MHz
全長	1.2 m
セル数	18
ポストカップラー	8
ユニットタンク数	2
材質	OFC
Q 。(測定値)	43500
Z	82 M Ω /m

2.1 入力結合器

DTLへの高周波の入力は同軸型の入力カプラー を通して行われる。タンクとの結合はループによる 磁気的な結合である。タンク真空は同軸線内部に円 盤型のセラミック窓を設置して保持している。(図 1(a)を参照)なおクライストロンからの電力は矩形 導波管(WR1800)で送られてくるので、ドア ノブ型のモード変換器を使用して矩形から同軸型 モードに変えている。(図1の(b)と(c)を参照)

2.2 中電力試験

クライストロンの出力をDTLに入力する前の段

-85-

階として、クライストロン駆動用増幅器の出力を直(b) 接入力結合器を通じてタンクに入力してみた。主に はセラミック窓のコンディショニングが目的であっ た。電力レベルは1~100wであった。図2に ピーク50w、パルス幅50µsec、繰り返し10 Hzのパルスを入力した場合のタンク内RFレベル を示す。波形のぎざぎざはタンク内(入力結合器も 含む)でマルティパクターが生じているためと推測 される。これは入力レベルが数wを越えると生じ始 めた。(但し内部に輝点等は観測されなかったた め、マルティパクターの発生箇所は特定できなかっ た。)

図1.432MHzDTL用入力結合器 (a) 同軸円板型セラミック窓部周辺 (b)&(c)ドアノブ型の矩形―同軸導波管変換部 図2.中電力試験時のタンク内RFレベル。マルティパクターが生じている。入力パルスは
ピーク50w、幅100µsec、繰り返し10Hz。

2.3.大電力試験

中電力試験終了後、実際にクライストロン(トム ソンTH-2134)の出力をDTLに入力して本格的な 大電力試験を開始した。なおこの試験(コンディ ショニング)はイオンポンプ真上の圧力を2x10⁻⁷以 下に保って行った。

最初は低デューティー (パルス幅10 µ sec、繰 り返し10Hz)で、ピーク電力を大きく変えて (数10~210kw)、タンク内に電力が入り始 めるまでセラミック窓のコンディショニングを続け た。最初は全反射であった。そして10数分後から に序じょにタンク内に高周波が入り始めた。その後 は、電力のピーク値を下げ、パルスのデューティー とピーク値を序々に増加させていった。その時の様 子を図3に示す。横軸は時間(分)であり、●は入 力電力の平均値、○はピーク電力である。ほぼ3時 間でピーク電力156kw(パルス幅600μ sec、繰り返し50Hz) までコンディショニング が進んだ。デューティーは3%の定格であり、ピー クは定格の20%増しである。タンク各部の冷却水 の温度上昇は0.5~1.0℃であり、ほぼ予想通りで あった。この時の高周波パルスの様子を図4に示 す。上が入力波形、中央が反射波形、下がタンク内 レベルである。この時点ではクライストロン出力の 位相補償がされていなかったため、タンク内レベル が時間と共に低下しているのが観測できる。

その後パルスのデューティーを下げて(0.08%、 幅80μsec、繰り返し10Hz)、電力のピーク 値をさらに上げた。最高は230kwである。この 時の高周波パルスを図5に示す。

4. まとめ

大型ハドロン計画用に製作された432MHzア ルバレ型DTLモデルの大電力試験を行なった。3 %デューティーでは定格の20%増のピーク電力ま で問題なく高周波電力を入力することができた。よ り低いデューティー(0.08%)ではピーク電力23 0kwまで試験を行った。

なおビーム加速試験は上流のイオン源、LEBT、 RFQの複合系が整備されるのを待って行なう。

参考文献

[1]F. Naito, et al., Proc. 19th Linac meeting., Tokai, JA-PAN, JAERI - Conf 94-003, 81 (1994)

[2] F. Naito, et al., Proc. 1994 Linac Conf., Tsukuba, JAPAN, 137 (1994)

図4. 大電力試験(3%デューティー)時の高周波 信号。上はDTLへの入力パルス。中は反射波形、 下はタンク内レベル。横軸の単位は100 µ sec/div.。

図 5. 大電力試験(0. 08%デューティー)時の 高周波信号。入力電力のピークは230kw。横軸の単 位は20μ sec/div.。