Proceedings of the 20th Linear Accelerator Meeting in Japan (September 6-8, 1995, Osaka, Japan)

MEASUREMENT OF SPATIAL AND TEMPORAL DISTRIBUTIONS OF THE ELECTRON BEAM WITH OPTICAL TRANSITION RADIATION

Takuro SAKAI^{1)*,} Yasuhiro IWASE^{1),}, Takayoshi YAMAMOTO^{1)**,}, Goro ISOYAMA¹⁾, Syuichi OKUDA¹⁾, Juzo OHKUMA¹⁾, Eiichi NISHIMURA²⁾, Kiyoshi SAEKI²⁾, Akira KOBAYASHI²⁾, and Takio TOMIMASU²⁾

1) ISIR, Osaka Univ., 8-1 Mihogaoka, Ibaraki, Osaka 567

2) Free Electron Laser Research Institute, Inc., 4547-44 Tuda, Hirakata, Osaka 573-01

* Present address: Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-12

** Present address: Radioisotope Research Center, Osaka Univ. 2-4 Yamadaoka, Suita, Osaka 565

Abstract

The optical transition radiation (OTR), which was produced by 28 MeV electron beam, was detected by the high-speed gated image intensifier (II). The time resolution of this II is less than 3 nsec, so the temporal distribution could be known in this resolution. The beam profile, which have been bended 45°, was also measured to know the energy distribution in macro bunch. The result was successful, and the energy and 3-dimensional spatial beam distribution would be measurable.

可視遷移放射光による電子ビームの空間分布と時間分布の測定

1、はじめに

マクロパルス内のビームの構造(ビーム プロファイル、エネルギー等)を知ること は、加速器内で実際に起こっている物理現 象を知る上で重要である。しかしながらこ のような高速現象を知る手段は限られてお り、同時に複数のパラメーターを測定する ことは難しかった。近年において、遷移放 射光の可視部 (Optical Transition Radiation, OTR)を高速ゲートカメラで測定すること により、マクロパルス内のプロファイルを 測定することが可能になった¹⁾。遷移放 射光は、よく知られているように高速荷電 粒子が誘電率の異なる物質の境界面を通過 する際に、その界面より白色の光が放射さ れ、この光の性質は入射粒子の性質を引き 継いでいる²⁾。

今回、3次元的な電子ビームの構造を測 定するため、この高速ゲートカメラを利用 して電子ビームのプロファイルを観測し、 バンチ形状とマクロパルス内のエネルギー 分布の計測を試みた。 2、電子ビームのバンチ形状の測定

測定器としては、最短3nsecの高速ゲート をかけることができるイメージインテンシ フィヤー(浜松ホトニクスC4078)を用い て過渡モード電子ビームの観測を行った。 このイメージインテンシフィヤーのゲート 特性を65psecのパルスレーザーと高精度遅 延回路を用いて測定した結果について図1 に示す。

図1 イメージインテンシファイアーの ゲート特性

実際の電子ビームの測定は、産研レバン ドライナックの過渡モード28MeVのビーム で行った。まず、直線部の電子ビームのプ ロファイルをストリークカメラと同時に測 定し、バンチ形状の観測が可能であること を確認した後、45°偏向後1.1mの位置で、 ライナックトリッガーに対し、遅延時間を ビームのミクロバンチ幅と同じである 770psecごとずらし、ビームプロファイルを 測定した。図2に測定系の模式図を示す。 またこの測定系のジッターをTACとPHAに より測定し、200psec以下であることを確認 した。 特に偏向後のビームプロファイルの測定に 関しては、リレーレンズ系を使用し、OTR を3m以上中継して低バックグラウンドの 地点で計測を行った。これは、イメージイ ンテンシフィヤーはその構造上、X線にも 感度があり、偏向後は電子ビームのエネル ギー分散に起因する電子ビームの発散が大 きく多量のX線が発生するため、それを避 ける必要があるためである。またこのリ レー光学系における光線の経路を図3に示 す。また、図4にBCMにより測定した加速 管出口でのビームの電流波形を示す。

図4 加速管出口における電流波形

図5 ビームプロファイルの変化

このときのOTR光源としては、直径3'の シリコンウェハーの鏡面を用いた。図5に 45°偏向後のビームプロファイルの変化を 770psec毎に測定した結果を示す。この像は 画像処理を行い、CCDカメラのγ値で補正 を行った。電子ビームは水平方向に偏向さ れているため、この方向の位置によりエネ ルギーの変化を知ることが出来る。これに よるとバンチの前半部ではエネルギーが高 く、中間部ではエネルギーがほぼ揃い、後 半部でエネルギーが低くなっているのが確 認できた。

3、まとめ

以上の結果より、電子ビームの3次元的 な形状、及びエネルギー分布を高速ゲート カメラにより測定できることが確認でき た。これは、加速器内部の物理現象を把握 する有効な手段であるのと同時に、加速器 の調整に必要な電子ビームの主なパラメー ターをオンラインで観測することが可能で あることを示している。高精度のビームの 供給を要求されるFEL用のライナックの運 転などのビームモニターにも活用できると 思われる。

参考文献

1) T. Naito et.al., Proceedings of 19th Linear Accelerator Meeting in Japan

2) L. Wartski et al., J. of Appl. Phys. **46** 3644