[P30-16]

MULTI-BUNCH BEAM ENERGY COMPENSATION FOR ATF LINAC

S. Kashiwagi , ¹H. Hayano , ¹F. Hinode, ¹K. Kubo, ¹H. Matsumoto, ²S. Nakamura, ¹T.Naito, ¹K. Oide, ¹K. Takata, ¹S. Takeda, ¹N. Terunuma, ¹J. Urakawa , ³T. Okugi, ⁴M. Kagaya, ⁵S. Morita

The Graduate University for Advanced Studies 1-1 Oho, Tsukuba, Ibaraki, 305, Japan ¹National Laboratory for High Energy Physics 1-1 Oho, Tsukuba, Ibaraki,305, Japan ²Depertment of Physics, Faculty of Education, Yokohama National University 156 Tokiwadai, Yokohama, Kanagawa, Japan ³ Depertment of Physics, Tokyou Metropolitan University 1-1 Minami-Osawa, Hachioji, Tokyou, Japan ⁴Tohokugakuin University 1-13-1 Chuo, Tagajo, Miyagi, Japan ⁵E-CUBE Co., Ltd 5988-8 Hino, Hino-shi, Tokyo, 191, Japan

Abstract

The 1.54 GeV S-band linac for the Accelerator Test Facility (ATF) accelerates multi-bunch beam. The beam has 20 bunches of $2x10^{10}$ electrons with 2.8ns bunch spacing. As multi-bunch beam is accelerated in the linac, the beam has the energy deviation by the transient beam loading. The 1.54 GeV S-band Linac is an injector of the damping ring (DR), and the energy acceptance of the DR is $\pm 0.5\%$. This means that the beam loading compensation system is necessary in ATF for a successful operation of multi-bunch scheme. The system consists of compensating section in addition to regular accelerating section. The accelerating structures of compensating section are operated with slightly different RF frequencies of 2856 ± 4.327 MHz. This paper describes the principle of the beam loading compensation system and the results of this compensating experiment.

ATFリニアックにおけるマルチバンチビームエネルギー差補正

1. はじめに

次世代リニアコライダーで高いルミノシティーを得る ためには、マルチバンチビームによる運転が必要不可欠 である。しかし、ビームのパルス長が加速管のフィーリ ングタイムよりも短いマルチバンチビームを、定加速勾 配型の加速管で構成されたリニアックで加速した場合、 先頭のバンチから後方のバンチに行くにしたがって、加 速管内での過渡モードにおけるビームローディングによ り、エネルギー利得がほぼ線形に減少してしまう。この マルチバンチビームの過渡モードにおける加速管内のビー ムローディング電圧(E_{bl})は、先頭バンチが加速管に 入射したときをt=0とすると以下のように表せる。

$$E_{b}(t) = \frac{r_{0}i_{0}L}{2} \left[\frac{2\tau e^{-2\tau}}{1 - e^{-2\tau}} \frac{t}{t_{f}} - \frac{1 - e^{-2\tau}}{1 - e^{-2\tau}} \right]$$

ここで \mathbf{r}_0 , \mathbf{t}_r , L, τ は、それぞれ加速管のシャントイン ピーダンス、フィーリングタイム、加速管全長である。 また電流 \mathbf{i}_0 は

$$i_0 = \frac{e N_e}{t_{--}}$$

であり、バンチ間隔t_{sp}と1バンチ当りの電子数N_e,素電荷 eより求まるバンチトレインの平均電流値である。

このように、ビームローディングによって生じるマル チバンチビーム内のエネルギー差を補正する方法にはい くつかあるが、ATFでは基本周波数(f_0)とは異なる周 波数($f_0 \pm \Delta f$)の加速管をリニアックの途中に入れるこ とによって、エネルギー差を圧縮する補正方法を採用し た。このエネルギー差補正の原理は、バンチ間隔が一定 のマルチバンチビームが異なる周波数($f_0 \pm \Delta f$)の加速 管を通過する際、RFの周波数が基本加速周波数(f_0)と

異なるために先頭のバンチから後続のバンチにいくにし たがってずれた位相で加速され、加速(減速)のされ方 に差が生じる。そして、先頭のバンチが最も減速され、 最後尾のバンチが最も加速される位相にマルチバンチを のせることによって、マルチバンチビームローディング によってできたエネルギー差を補正することができる (図1)。この方法は、クライストロンやパルス圧縮器 (SLED)からのrf出力を最大限に活用してマルチバンチ を加速し、その結果生じたエネルギー差を、リニアック の中途にある、±∆fエネルギー差補正ユニットでエネ ルギー差を圧縮することができるため、ビームのRF に 対する入射のタイミングを変えることによってエネルギー 差補正をする方法よりも、リニアックでの加速効率が高 い。そして、補正用加速管内で加速正弦波のスロープの 部分でビームを加速することによってできる、シングル バンチ内のエネルギー差は、2つのずれた周波数(±Δf) を用いることによって打ち消すことができる。また、こ の補正方法はマルチバンチビームの電流量が変化した場 合もRFの出力パワーの調整のみで柔軟に対応できる。

-183-

2. ATFにおけるエネルギー差補正システム (ECS)

ATFではバンチ数;20バンチ、バンチ間隔;2.8nsの 大電流マルチバンチビームの加速を行っている。そして、 マルチバンチビームをリニアックで1.54GeVまで加速し た後、超低エミッタンスビームを作り出すダンピングリ ング (DR) にビームを入射するが、このダンピングリン グのエネルギーアクセプタンスが±0.5%と小さい。マ ルチバンチビームの加速管への入射タイミングを調整す ることによって行うエネルギー補正などを行わなかった 場合、1バンチあたりの電子数が2.0×10[®]個で20バンチ のマルチバンチビームを加速すると、加速管での過渡的 ビームローディングによってリニアック全体で約8%のエ ネルギー差ができてしまう(図2)。そのためビームを 損失なくDRへ入射するためには、過渡的ビームローディ ングによって生じるマルチバンチビーム内のエネルギー 差を圧縮するためのエネルギー差補正システムが必要で ある。

図2 リニアック全体でのエネルギーゲイン (レギュラーユニットでSLEDを使用し、加速管のフィーリングタイム後 にビームを入射した場合)

エネルギー補正実験セットアップ

ATFリニアックは、S-band(2856MHz)のレギュラー加 速管16本と補正用の加速管2本(2856±4.327MHzが各1 本)が図3の様に配置されている。この補正用の加速管 へのRFパワーの供給には、SLAC5045クライストロンを 使用し、RFのパルス幅は1.0 µsとした。

図3 ATFリニアック加速管の配置 (L01-L16 regular sections, LEC1,2 compensating section)

タイミングシステム [1][2]

ATFにおける全てのリファレンス信号は1つのmaster oscillatorによって作り出された信号(1428MHz-CW) から分配されており、そのうち加速周波数(2856MHz) の リファレンス信号は、master oscillatorからの 1428MHzの信号を2逓倍することによって作られ、他の リファレンス信号もまた分周器によって作り出されてい るため、全てのコンポーネントで同期がとれている。そ して、エネルギー差補正用周波数($f_0 \pm \Delta f$)は、 714MHzの信号を1/165倍に分周して作られるサイドバン ド信号 (± Δ f) と加速周波数 (2856MHz) の リファレ ンス信号の2つの信号を特別な変調器内で合成すること によって作られる。このサイドバンド信号の周波数は DRの周回周波数 (2.16MHz; 714MHzの1/330) と同期 をとるため、および加速するマルチバンチのバンチ数か ら4.327MHzに決められた。また、エネルギー差補正セ クションでは加速正弦波のスロープ部分の位相でバンチ を加速するため、エネルギー差補正のためのリファレン ス信号のゆらぎはエネルギー補正に大きく影響する。今 回使用した、補正用のリファレンス信号のphase jitter は 全幅で1.7 ps (σ =0.8 ps) であった。

エネルギー測定システム

マルチバンチエネルギー差補正後の各バンチの相対的 なエネルギー関係は、ビームトランスポートライン(BT) 入口付近に設置してあるストリップライン型ビーム位置 モニター(BPM)で、偏向電磁石で曲げられたビーム のエネルギーの違いによる、基準軌道からの各バンチの 水平方向のずれ(Δx)の大きさを測定し、そのずれ (Δx)の大きさとBPMの設置してある位置での dispersion function(η)から求めた。

また、シングルバンチのエネルギー分布の測定も同じ くビームトランスポートライン入口で行った。測定方法 はプロファイルモニターのスクリーンにSUS板を使用し、 ビームがスクリーンに衝突した時に真空とスクリーンと の境界で生じる OTR光 (Optical Transition Radiation Light) を高速ゲートカメラで3ns程度のゲートをかけ光 を観測することによって測定した。

3. マルチバンチビームエネルギー差補正実験

<u>補正用RFのタイミング及び位相調整</u>

補正用クライストロンからのRF出力とビームの間のタ イミング調整は、リニアック下流のプロファイルモニター を使い、OTR光を観測することによって行った。最初に、 測定に使用するカメラのゲートのタイミングは、バンチ トレインの中央付近のバンチに合わせ、プロファイルモ ニタのスクリーン上に基準位置を決めておく。そして、 補正用電源(9,10号機)のRFのタイミングをそれぞれ 100nsステップで変化させ、RFのタイミングを1ステッ プ変えるごとにビームの中心が基準位置にくるように偏 向電磁石の電流値を変えて調整し、その時の電流値からビー ムのエネルギーを測定した。この操作を繰り返し行い、 タイミングを1.8µsスキャンをした時の、ビームのエネ ルギーとRFタイミングの関係をプロットすると図4のよ うな結果になった。

また同様に位相調整はOTR光を観測しながら、補正用 加速管に供給するRFの位相を20度ステップで変化させた。 この時のビームエネルギーとRF位相の関係は図5のよう になった。この2つの測定結果より、補正用RFのタイミ ング及び位相を決定した。

マルチバンチビームエネルギー測定 [3]

ビームのエネルギー測定はBPMの水平方向の電極から 検出される信号を、850MHzガウシアンローパスフィル ターを通してデジタルオシロスコープ (2.5GHzサンプル) を用いて測定し、そのデーターをGPIBでパソコンに取り 込んだ。今回の測定の位置分解能は、オシロスコープを 使用したことによって制限され、測定レンジ、信号振幅 およびBPMの位置感度係数などから位置分解能は約22.5 µmであった。この位置分解能をBPMの設置位置での dispersion function (n=68.5 cm) を用いてエネルギー分 解能に換算すると0.003%に相当する。この値は、DRの エネルギーアクセプタンス±0.5%より十分小さいため 補正後の各バンチのエネルギー差を測定するのに、十分 な分解能であると考えられる。先に示したdispersion functionの値 (η =68.5 cm) はSADの計算結果であるが、 まえもって実際にビームを用いて、今回測定に使用した **BPM**の位置でのdispersion function (η) の校正を行った。 その結果、SADの計算値とビームを用いて測定された値 (n_b=58.82 cm)とは約14%の差が生じた。しかし、1%以 下のネルギー差を評価するのに、この差は十分許容範囲 と考えられるため、今回の実験では、SAD計算値の dispersion functionを採用した。

マルチバンチビームエネルギー差測定結果

今回加速したマルチバンチビームのリニアック下流で の全電荷量は約3.2 ×10¹⁰(electrons / train)であった。 電荷分布は図6の様になっていた。

図6 各バンチの電荷分布 この各バンチの電荷量は、リニアック中の積分型電流 モニターで測定された1つのバンチトレインの総電荷量 を、壁電流モニターから検出されるマルチバンチビーム の信号振幅の比で分配することによって求めた。そして、 補正を行った場合と行わなかった場合の、マルチバンチ 内の各バンチの相対的なエネルギー関係を、前に述べた ビームトランスポートラインのBPMを用いて測定した結 果は図7のようであった。先頭の方のバンチのエネルギー が下がってしまっているのは、ビームがBPMの直前にあ るコリメータによって削られてしまったためと思われる。

図7 補正後のマルチバンチビームエネルギー分布

4.まとめ

今回、20バンチ(全電荷; 3.2×10^{10} electrons / train) のマルチバンチビームを約1.16 GeVまで加速し、ビーム ローディングにより~2.0%のエネルギー差が予想され るところを、ダンピングリングのエネルギーアクセプタ ンスである±0.5%以下に補正することに成功した。こ れによって、異なる周波数($f_0 \pm \Delta f$)の加速管を用いた エネルギー差補正の原理が実際に可能であることを確認 することができた。今後、補正用RFの位相調整及び各バ ンチのエネルギー測定の方法などを自動的にできるよう に開発していきたいと考えている。またエネルギー補正 が、dispersionやchromaticな効果から生じるエミッタン ス増大へ、どのような影響を与えているかをビーム実験 などを行い詳細に調べる必要があると思われる。

謝辞

今回のビーム実験を行うにあたり、終始助言とご協力を頂い た高エネルギー物理学研究所AIFグループの方々に深く感謝い たします。また、高エネルギー物理学研究所放射光実験施設の 設楽氏、本間氏には、HCS用のクライストロン変調器を快く貸 し出して頂き、本実験が実現できました。ここに深く感謝いた します。

参考文献

[1] T.Korhonen et. al. R&D of the ATF Timing System. Proc. Int. Linac Conference (LINAC94)

[2] T.Korhonen et.al.:Energy Compensation System in ATF Linac; Proc. of the 20th Linear Accelerator Meeting in Japan (1995)

[3] HH ayan o : ビーム診断(ハードウエア編); FFIR Workshop at Atami (1994)