AT MULTI-BUNCH BEAM ENERGY COMPENSATION

S. Kashiwagi, ¹H. Hayano, ¹T. Korhonen, ¹K. Kubo, ¹T.Naito, ¹K. Oide, ¹S. Takeda, ¹J. Urakawa, ²S. Nakamura, ³F. Tamura and ⁴S. Morita

> The Graduate University for Advanced Studies 1-1 Oho, Tsukuba-shi, Ibaraki, 305, Japan ¹High Energy Accelerator Research Organization 1-1 Oho, Tsukuba-shi, Ibaraki,305, Japan ²Depertment of Physics, Faculty of Education, Yokohama National University 156 Tokiwadai, Hodogaya-ku, Yokohama-shi, Kanagawa, Japan ³University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

⁴E-CUBE Co., Ltd

5988-8 Hino, Hino-shi, Tokyo, 191, Japan

Abstract

By using the SLED cavity, the RF high power test for ΔT energy compensation was performed at Accelerator Test Facility (ATF) in KEK. To compensate multi-bunch beam energy for various beam currents, the input waveform into accelerating structure is changed by controlling the phase and combining the rf-power from two klystrons with a 3dB hybrid combiner. In this test, an arbitrary waveform was generated by changing the rotating speed of the each klystoron phase into the opposite direction.

ΔT マルチバンチビームエネルギー差補正

1. はじめに

現在計画されているリニアコライダーでは、ルミノシ ティーを高くするために衝突点での非常に小さいビーム サイズと大電流のマルチバンチビームによる運転が必要 不可欠である。しかし、大電流のマルチバンチビームを 線形加速器(リニアック)で加速すると、ビームローディ ングによりバンチトレイン内の後方バンチは前方バンチ よりも大きな減速力を受け、一つのバンチトレイン内で エネルギー差が生じてしまう。そして、リニアックのあ る距離をビームが進むときビーム内にエネルギー差があ り粒子によってphase advanceが異なる(収束力が異なる) と、横方向の運動についてのphase space 上で異なる回転 をするためエミッタンスが増大し、ビーム輸送効率を下 げるなどの問題を引き起こす。このマルチバンチ加速に おけるバンチ間のエネルギー補正はリニアコライダーに とっては本質的に重要な課題であり、その補正法はリニ アック加速方式の設計を左右するものである。

リニアコライダーの前段リニアック(Pre-linac)など の低周波数(おもにS-band)リニアックにおいてはマル チバンチエネルギー差補正方法として次の様な方式が考 えられている。1つは、基本加速周波数(f₀)と僅かに異 なる周波数(f₀± Δ f)の加速管をリニアックに設置し、 マルチバンチビームを加速することによってエネルギー 差補正をする± Δ F方式[1]。この± Δ F方式では加速と補 正がリニアック中で別々に行われる。またその他に、加 速と補正を同時に行うエネルギー差補正方式としてRF位 相調整方式(Δ T方式)がある。この Δ Tエネルギー補正 方法は、すべての加速管の出口でエネルギー差を最小に することができるため、ビーム光学的に優れたマルチバ ンチビームエネルギー差補正方法である。 2. ΔTマルチバンチビームエネルギー差補正方法

このエネルギー補正方法は、ビームローディングによっ て生じたバンチトレイン内のエネルギー差を、RFパワー が完全に加速管に充填される前にビームを入射し、かつ 加速管に供給するRFの振幅を変化させることによって、 図1のV(t)スロープの傾きを調整し補正するものである。 また Δ T方式では大電流のマルチバンチビームの場合、V (t)スロープの傾きを大きくし補正効果をあげるために、 フィリングタイムの短い(T=300~500ns)加速管が有 効である。

図1 ビーム入射タイミングとエネルギー利得

SLEDを使用するRFユニットにおいて、加速管に供給 するRFパルスの波形を変化させるためには、位相反転後 のクライストロンの出力波形を変化させる必要がある。 しかし、直接クライストロンに入力するRFパワーの振幅 を変化させると、クライストロンでのRFパワーの入力・ 出力特性が非線形であることやクライストロンにかける 電圧の僅かな変化でRFパワーゲインが変化してしまう事 などから、安定にRFを出力することが困難になってし まう。そのため、クライストロンは最大効率の状態 (saturation mode) で運転しなくてはいけない。そこで、 2台のsaturation modeで運転しているクライストロンか らの出力を3 dB結合器を用いて合成し、RF位相をそれぞ れのクライストロンで反対方向に180度変化させること により、SLEDへのRFパワーの振幅を変化させる(図2) [2]。

図2 位相を変化させることによるRF振幅調整

図3 エネルギーゲインとSLED出力波形 [2本のクライストロン出力各30MW(T_r_acc= 830 ns)]

SLEDを用いた位相調整式による任意波形の生成では、 SLEDでパルス圧縮した後の波形は図3のような三角波に なる。ビームを加速管の定常状態で加速する場合には、 RFパルスのフラットな部分があると大変都合が良いが、 現在のリニアコライダーのデザインではビームパルス幅 はおおよそ100 ns 程度と考えられているため、S-nand 加 速管ではマルチバンチビームは過渡状態で加速される。 そのため、加速管に供給するRF波形で特にフラットな 部分は必要ないと思われる。また、位相をゆっくりと変 化させることにより、RF振幅もゆるやかな変化をするため、急激に変えることによる加速管への急激なRFの突入を防ぐことができ、この位相調整方式ではDark Currentを減少させることができると思われる。そして、この補正方法をリニアコライダーのPre-linacなどのS-bandリニアック部で採用した場合、85バンチ、バンチ間隔1.4 ns、1バンチ当りの電子数7.2×10⁹ 個のマルチバンチのエネルギー差を、各加速管 ($T_{\rm f}$ = 830 ns)の出口でおよそ0.10%に圧縮することができる(図3)。

位相調整方式ハイパワーRF 試験 ハイパワーRF 試験セットアップ

今回のRF 試験は、ATFリニアックの8つのRFレギュ ラーユニットのうちの、2つのRFユニットのクライスト ロン出力パワーを合成して行った (図4)。合成後のRF パワーはSLEDでパルス圧縮をした後2本の加速管(L1、 L2)に供給された。そして、加速管入口の-70 dB方向性 結合器を用いてRF波形を測定した。

図4のローレベル回路のうち、phase shifter (No.1) は2 台のクライストロンの位相関係の調整および本RFテスト 後に行うビーム実験でビームの加速位相を調整するため に用いる。Delay & Pulse Modulator を用いて、CWのRF から任意のパルス幅のRFを作り出し、クライストロン 電源のメイントリガーに対するタイミングを調整できる ようにした。通常、ATFではパルス幅が4.5 µs、位相反 転(0-π) をパルスの始まりから3.5 μs のタイミングに し運転している。実際には、クライストロンにかかる負 担を軽減するために、電源パルスのフラットトップは 4.5 µs以下であるため、クライストロンの出力波形は完 全な方形波ではなく立ち上がり、立ち下がりがなまって しまっている。今回の測定では、クライストロンの出力 波形の立ち下がりの部分ができる限りなまらないように、 通常よりもクライストロンへの入力RFのタイミングを早 めた。そして、phase shifter (No.2)に位相コントロール 用のパルスを入力することにより、クライストロン入力

RFの位相をコントロールした。また、今回はコントロー ル用パルスは2つのPulse Generator (HP 8112A)の出力 を合成し、片方のPulse Generator のパルス立ち上がりエッ ジ(LEE)を調整することにより作り出した(図4)。

測定および測定結果

今回の測定では導波管組み替え後、導波管及びダミー ロードの十分なRFプロセッシングが行えなかったので、 RF合成試験では各クライストロン出口でRF出力は約 20MWであった。測定では、同じ大きさのRFパワーを合 成するために、まず1台ずつクライストロンを運転し SLED入口で同一ケーブルを用いてRFパワーを測定し調 整した。次に合成する2つのRFの位相調整およびタイミ ングの調整を行った。そして、Phase Shifter (No.2)の LEE 設定を数段階変え、加速管入力のRF波形を観測した (図5)。

測定に使用したPhase Shifterの速度応答性を調べたと ころ、図6に示したように位相コントロールパルスに対 してRF位相の変化が十分に追従していない。これでは、 任意のコントロールパルスを作り出せたとしても、RF位 相を制御することができないので、 今後高速応答性をも つPhase Shifter の開発が必要である。

また位相反転の際、合成されたRFパワーがダミーロー ド側に全て入力される時間帯がある。時間としては数10 ~数100nsと短い時間であるが、合成部での反射により クライストロン側にRFが戻っていないかなどを方向性結 合器などを増設し調べる必要があると思われる。

図6 Phase Shifter コントロールパルスとRF 位相変化

4. まとめおよび今後の予定

今回の測定から、位相調整をするためのローレベル系の回路の改良が必要と思われる。また、実際にオペレーションなどがしやすいようRFパワーのモニターなどを、 どこに設置すべきかなども考える必要がある。

今後このRF波形によりマルチバンチビームでのエネル ギー差補正実験をATFリニアックの上流部にて行う予定 である。

謝辞

今回の実験を行うにあたり、終始助言とご協力を頂い た高エネルギー加速器研究機構のATFグループの方々に 深く感謝いたします。また、(有)イーキューブの松井 氏、和知氏、宮本氏には、導波管の組み替え作業などに 協力していただき、本実験が実現できました。ここに、 深く感謝致します。

参考文献

[1] S. Kashiwagi et al., "Preliminary Test of +-AFEnergy Compensation System". Proc. 1996 Int. LinacConf., (LINAC96)

[2] T. Shintake et. al., "C-band RF Main Linac System for e+e- Linear Colliderat 500 GeV to 1 TeVC.M. Energy", Proc. of EPAC 96, pp. 2146-2148.