FABRICATION OF THE S-BAND ACCELERATOR GUIDES FOR KEKB INJECTOR (II)

Yasuhito IGARASHI^{*}, Seiya YAMAGUCHI^{**} and Atsushi ENOMOTO^{**}

 * Mitsubishi Heavy Industries , Ltd. Nagoya Aerospace Systems 10 , Oye-cho , Minato-ku , Nagoya , Aichi , 455
** KEK , High Energy Accelerator Research Organization 1-1 , Oho , Tsukuba , Ibaraki , 305

Abstract

S-band accelerator guides for the KEKB injector upgrade are under fabrication. Measured RF characteristics, such as VSWR, filling time, attenuation constant, phase distribution, are reported.

KEKB 入射器用 S バント 加速管の製作(Ⅱ)

1. はじめに

KEKB 入射器では, B ファクトリー計画に向けた改造に おいて新規に約 70 本の加速管を製造する.加速管の 基本的な構造は従来^[1]と同じ, 2856MHz, 30℃で運転 される 2π/3 モート 進行波準定電界型の 2m 管である. こ の加速管は電鋳法^[2]を用いて製造し,周波数調整のた めの変形を一切加えない.電鋳法は全く熱を加えず (30℃以下)空洞を一体化するため変形が少なく,軽い 加速管ができるという利点があるが,一方,加速管の性 能は,超精密旋盤によるディスクとスペーサーの加工精度, 及び電鋳応力のコントロールで決まる.電鋳は量産効果を 上げるために高速電鋳であり,今回は 2 本同時に行っ た.設備の能力としては3本同時電鋳が可能である.な お,電鋳応力による空洞の変化は,160~190kHz とみ ている.

前回の本研究会までに、加速管用カプラーの設計,製作^[3], 2a-2b曲線,及び素管製作^[4]について述べたが、 今回は完成した加速管の最終 RF 測定を全本数について行っているので、その結果について報告する.

種類	第1ディスク孔径	最終ディスク孔径	加速	製造			
1997 - 1997 -	2a (mm)	2a (mm)	空洞数	本数			
A ₀	26.975	24.950	27	4			
Α	24.950	20.900	54	12			
В	24.650	20.600	54	8			
С	24.350	20.300	54	12			
D	24.050	20.000	54	12			
Е	23.750	19.700	54	20			

表1 KEKB 入射器用加速管

2. 加速管の種類

加速管はビーム発散対策のため、表1に示した6種 類を製造した.加速管用カプラーには電磁場の非対称補 正のため、アイリスの反対側に三日月型のカットを施してあ る. またビームホールの R は従来 2mm であったが, 放電対 策のため 7mm に変更した. 既存の加速管は A~Eの5 種類であるが、今回は新たに A₀ タイプ (2a=26.975mm) を製造した.この Au タイプ は陽電子生成標的直後のユニ ットでのみ使用されるもので、1m 管であり、入力カプラ-が17ィードと27ィードの2種類ある(図1).標的直後の 加速管は DC ソレ/イドの強磁場中で使用され、激しい放 射線にさらされるため,過去に度重なる放電トラブルを起 こしてきた. そのため 1m 管とすることで入力高周波の パルス幅を短くし,さらに2フィートカプラー(ビームホールのRは 20mm である)を使用することにより電磁場の対称性を 良くするとともに、アイリスでの電場強度を下げて放電を 押さえるようにした. [5]

図1 陽電子生成標的直後の加速ユニット.

3. 最終 RF 測定結果

RF 測定は図 2 に示す構成で, 温度(25±0.5℃), 湿 度(50±5%)の管理された部屋で行った.加速管には 常に恒温水循環装置を用いて 30℃の冷却水を 81/min 流し、測定時には管内に乾燥窒素ガスを流すようにし た. 周波数補正は、加速管の温度と管内湿度をもとに、 30℃, 真空換算で 2856MHz となるようにした. 加速管 の温度は4箇所をサーミスタ高精度温度計で測定し、温 度差が0.1℃以下となるようにしてある. RF計測にはHP ベクトル・ネットワーク・アナライサーを使用し、制御とテータ収集は HP VEE で行った. 主な計測内容は,入出力カプラーでの VSWR, 充填時間 (減衰定数 r),位相長である. さら にこの装置では、位相特性の測定として Nodal shift 法 とビード摂動法^[6,7]の 2 通り行えるようにしてある. Nodal shift法にはø16mmの離調棒を使用し、ディスク等に触れ ることのないようアライメントしてある.ビード摂動法には、外 径 0.46mm, 内径 0.25mm, 長さ 5.0mm の針 (SUS304)と伸び縮みの少ない糸を使用し,軸 方向に 34.99mm の間隔でステッピングモータにより 駆動する.針が停止する各位置の精度は± 0.05mm以下である. 針の移動距離はマク・ネスケー ルによりモニターした.

測定例としてE型管(E58)の各測定結果を図3に示す. E58の測定結果は,

入力側での VSWR	1.05
出力側での VSWR	1.07
充填時間	0.573µsec
減衰定数 τ	0.367
位相の標準偏差σ	
Nodal shift 法 …	1.3 °
ビート 摂動法 …	3.5°

ただし、 rtt Q=14,000 として計算してある. 正確なQ値 は今後基準空洞を用いて計測する予定である.

Accelerator guide

Magnescale \bigcup data

Udata

monitor

data

control

bead

Thread

Personal

computer

Input

Vector

Network Analyzer

図 2 加速管 RF 測定装置構成.

図 3-4 ビート 摂動法.

次に,各タイプにおける測定値の平均を表2に示す.なお,これらは7月末までに測定の終了している34本分についてまとめたデータである.また,VSWR とのについて、34本の平均を求めると以下の通りとなる.

入力側での VSWR	1.10
出力側での VSWR	1.10
σ - Nodal-shift 法	2.9 °
系列1 …	2.3 °
系列2 …	2.4 ° ·
系列3 …	2.5 °
σ- ビート 摂動法	4.5 °

σ-ビード摂動法はσ-Nodal shift 法と比べて大きな結果 が出た.この理由については現在検討中である.

表 2 加速管 RF 測定結果(平均).

種類	入力側 VSWR	出力側 VSWR	充填 時間	τ	σ - Nodal shift 法	σ - ビード 摂動法
Α	1.11	1.10	0.470	0.300	2.1	2.6
В	1.11	1.09	0.492	0.315	3.1	4.4
С	1.10	1.10	0.515	0.330	3.1	5.0
D	1.09	1.10	0.543	0.348	3.5	5.6
Е	1.10	1.12	0.569	0.365	3.1	5.0

4. まとめ

完成した加速管の最終 RF 測定を行った結果, VSWR 1.1 以下, 位相特性 σ3°以下となった(7 月末 現在). 無調整管であることを考慮すると, おおむね満 足する結果であった. σがやや大きくなったことは, 電鋳 応力のコントロールがまだ完全でないためと推測され, 今 後の課題である.

参考文献

- [1] 佐藤勇,博士論文 "2.5GeV 電子線形加速に関する研 究",東北大学, 1986.
- J.Tanaka, et al. "On Electroforming of Disk-loaded Waveguide of Linear Structure",応用物理, 第 31 巻, 第 2 号, 1962 年, pp.146-154.
- [3] 五十嵐,他, "S-ハント 加速管用カプラーの設計",第20回リ ニアック技術研究会,大阪,1995.
- [4] 五十嵐, 他, "KEKB 入射器用 S-ハント加速管の製作", 第 21 回リニアック技術研究会, 東京, 1996.
- [5] 佐藤勇, 他, "放射光入射器增強計画", KEK Report 95-18, March 1996.
- [6] T.Khabiboulline, et al. "Tuning of a 50-cell constant gradient S-band traveling wave accelerating structure by using a nonresonant perturbation method", DESY M-95-02 (1995).
- [7] T. Khabiboulline, et al. "A new tuning method for traveling wave structures", Proceedings of 1995 Particle Accelerator Conference and International Conference on High-Energy Accelerators, May 1-5, Dallas (1995).