Proceedings of the 23rd Linear Accelerator Meeting in Japan (September 16 - 18, 1998, Tsukuba, Japan)

# (F17p10)

Development of the High Power Klystron with CW Mode and Short Pulse Mode

# K. Hirano, T. Emoto, Y. L. Wang, I. Sato\*

PNC, Power Reactor and Nuclear Fuel Development Corporation 4002 Narita, Oarai-machi, Ibaraki-ken, 311-13, Japan \*Atomic Energy Research Institute, Nihon University (Guest Researcher to PNC) Narashinodai 7–24–1, Funabashi 274, Chiba–ken, Japan

パルスモード兼用大電力CWクライストロンの開発

## ABSTRACT

The klystron has achieved CW RF output power of 1040kW and beam voltage of 83kV at present. Peak power of 4.2MW at a beam voltage 147kV is required for pulse-mode operation (100  $\mu$  sec pulse width, 50 pps). We have developed the way of reducing apparently the output cavity Q  $\ell$  optimized for CW-mode operation. The output cavity Q  $\ell$  was decreased by two obstacles located on the long window. The klystron has achieved the maximum peak power, which was 3.55MW with efficiency of 42% at a beam voltage 147kV at present.

### 1. はじめに

大電流CW電子線形加速器開発の一環として、大 電力クライストロンの開発印を進めてきた。これま でに、CWモードでは、ビーム電圧83kVで最大出力 電力1040kW、出力電力効率58%の大電力CWクライ ストロンを開発した。今後は加速器のビームエネル ギーを増強する等も視野に入れたビーム利用の計画 を立案する必要がある。そこで、パルス幅100 µ sec のショートパルスモードでビーム電圧を147kVに高 め、反射体を利用して出力空洞Q ℓ 値(loaded Q)を変 化させ、クライストロンのピーク出力電力を現在の 4倍以上に高める検討を行った。ショートパルス モードでは、これまでに、ビーム電圧147kV、カ ソード電流56.5Aにおいて最大出力電力3.55MW、出 力電力効率42%が得られている。本論文では、CW モードにおける性能を損なわせることなく、ショー トパルスモードで4MW以上のピーク出力電力を得 るためのクライストロンの開発について報告する。

# 2. 反射体及び出力導波管部の設計

クライストロンの開発目標としては、CWモード で、ビーム電圧90kVで出力電力1.2MW、ショート パルスモードでは、ビーム電圧147kV、カソード電 流56.5A、パルス幅100 μ sec、繰り返し50ppsで 4.2MW以上とした。

## (1) 反射体のVSWRと出力空洞Q ℓ 値との関係

高周波相互作用部はCWモードにおける出力効率 を最大となるよう、設計が行われている。このた め、CWモードよりビーム電圧が高いショートパル スモードでは、ビーム電圧に対する出力空洞のQ ℓ 値が高過ぎるため、出力電力が低くなる。また、電 子が電子銃側へ逆行する(以下、「逆行電子」と言 う)ため、出力電力が不安定になる。

そこで、出力窓側に反射体を設置して出力空洞側 からみたインピーダンスを変えることにより、Qℓ 値を変化させ、ショートパルスモードにおける出力 電力効率を向上させる。

キャビティからみたCWモードの結合係数 $\beta$ al及 びVSWR= $\rho$ の反射体を置いた場合のパルスモード の結合係数 $\beta$ a2とインピーダンスとの関係は(1)式 及び(2)式で表される。

| $\beta a1=Zcw/Zc$                                   | (1) |
|-----------------------------------------------------|-----|
| $\beta = 2 - 7/7 - 7/7 - \infty + 7 - \infty/7 - 0$ | (2) |

|   | paz- | LILC-LILCW | LCWILC     | (2) |
|---|------|------------|------------|-----|
| 2 | こで、  | βa>1の時、    | 電圧定在波が最小とな | ころく |

ンピーダンスは電圧定在波比 $\rho$ の逆数に一致する。 Zcw/Zpulse=1/ $\rho$ 

| ビームから見たインピーダンスは(3)式である。                                          |     |  |  |
|------------------------------------------------------------------|-----|--|--|
| Z/Zcw=( $\rho$ + j tan $\beta$ L) / (1 + j $\rho$ tan $\beta$ L) | (3) |  |  |
| 位相定数 $\beta = 2\pi / \lambda g$ 、 $\lambda g = 0.349439$         |     |  |  |
| βa2の最大値は(4)式である。                                                 |     |  |  |

- $\beta a2max = \rho \quad \beta a1 \tag{4}$
- CWモードの出力空洞のQ $\ell$  cw値とパルスモードの出力空洞のQ $\ell$  pulseとの関係は(5)式で表される。
  - $Q \ell cw=Qin/(1+\beta a1) \Rightarrow Qin/\beta a1$   $Q \ell pulse=Qin/(1+\beta a2max)$   $\Rightarrow Qin/\beta a2max=Q \ell cw / \rho$ (5)

よって、VSWR= $\rho$ の反射体を使用すると、CW モードのQ $\ell$ cw値を最小で1/ $\rho$ 倍にできる。

### (2) Q ℓ 値を最小にする反射体位置

DMSコード(Disk Model Simulation Code)で解析を 行い、ショートパルスモードのビーム電圧147kVで 最高出力効率が得られる出力空洞Q $\ell$ 値を求めた。 この結果、逆行電子がほとんど現れない条件では、 Q $\ell$ 値22.5で最高出力効率51%が得られた。 Sベンド導波管を付けた出力空洞のQ $\ell$ 値の実測値 は57であった。反射体が設置位置からずれるとQ $\ell$ 値が増大するため、Q $\ell$ 値が目標値より多少低くな るようにVSWR=3の反射体を採用した。この場合、 Q $\ell$ 値を最小で1/3倍の19とすることができた。

この反射体によって出力空洞のギャップにおける 電界が最小となる反射体の位置を求める。出力空洞 に付いたSベンド導波管の先に反射体を取り付けた 計算体系を図1に示す。計算条件として、ビームが 通るドリフト管を同軸構造とし、進行波をドリフト 管側から出力空洞を通して反射体側へ出力させると ともに、Sベンド導波管端部から反射体までの位置 を変化させて、出力空洞のギャップにおける電界を MAFIAで計算した。反射体出力側の導波管内の最 大電界で、ギャップ間電界を規格化した。図2に反 射体位置とギャップ間電界を規格化した。図2に反 射体位置とギャップ間電界が最小、つまり、Qℓ値が最小 になる反射体の位置はSベンド導波管端部から 193mmの位置であることがわかった。



図2. 反射体位置とギャップ間電界との関係

## (3) 反射体と出力窓の位置関係

反射体と出力空洞間に定在波が立つため、セラ ミックス窓における電界が高くならないように反射 体の位置を決める必要がある。出力窓と反射体を接 続した計算体系を図3に示す。セラミックス中心部 から反射体までの位置を変化させ、1MWのRFを透 過させた場合のセラミックスのパワーロスを計算し た。反射体位置とセラミックスのパワーロスとの関 係を図4に示す。点線が示す反射が無い場合のパ ワーロスと同じになる反射体の位置は、セラミック ス中心部から427mmの位置であることがわかった。





図4. 反射体位置とセラミックスパワーロスとの関係



図5. 出力空洞から反射体までの構成

# (4) 出力空洞から反射体までの構成

出力空洞から反射体までの構成を図5に示す。出 力空洞に接続されたSベンド導波管端部から反射体 までの間にEコーナ管と出力窓が接続されている。 まず、出力窓単体の位相長の測定結果から、出力窓 の両端のフランジ間の位相長が3πとなるように寸 法を決めた。ただし、反射体を含む導波管と出力窓 端部とを接続するフランジの位置は、反射体の位置 から出力窓のセラミックス中心部までの距離427mm の間にあり、出力窓の位相長3πを確保できる位置 とした。次に、Eコーナ管の寸法をMAFIAを用いて 計算し、Eコーナ管の位相長が2πとなるように寸 法を決めた。この結果、Sベンド導波管端部から5π +193mmの位置に反射体を設置すればよいことが分 かった。この反射体の位置はギャップ間電界が最小 となり、かつ、窓への定在波の影響が無いような位 置である。図5に反射体の位置を示す。上記に示す 反射体の設計を反映させたクライストロンを2台(ク ライストロンNo.2及びクライストロンNo.3)製作し た。

#### 3. 出力電力の波形測定

計算によって求めた反射体の位置を基準位置と し、クライストロンNo.2の出力電力の波形を測定し た。また、スペーサを用いて反射体の位置を基準位 置から±30mmに移動させて同様に測定した。入出 力電力の波形を図6に示す。試験条件は、パルス幅 3µsec、繰返し400Hz、ビーム電圧135kV(ch1)、カ ソード電流58.8A(ch2)、パービアンス1.2µpであ る。

### (1)反射体の位置が設計値の場合

ピーク出力電力3.7MWが安定して得られた。

# (2)反射体の位置が窓側へ30mmの場合

出力電力3.1MWのパルス波形の後半部にのこぎり 状の不安定現象が生じた。Q値の高い第2空胴が逆 行電子によって励振され、その共振周波数が強調さ れたために第2空胴の離調周波数3.4MHzに対応した 不安定現象が現れたと考えられる。

# (3)反射体の位置がダミーロード側へ30mmの場合

パルス幅3µ secの出力電力波形が4.3µ secに伸びる 不安定現象が生じた。入力空胴が逆行電子によって 励振されたために、入力電力がなくてもビーム電流 があるところでRFが出力されたと考えられる。

#### 4. 出力電力効率の測定

クライストロンNo.3の出力電力効率を測定した。 5分割された集束コイルのうち、出力空洞付近に設 置されているNo.5コイルの磁場を弱め、真空度が悪 化しない程度にビーム径を広げた。この結果、ビー ム電圧147kV、パービアンス1.0μpで、ピーク出力 電力3.55MW、出力電力効率42%が得られた。

### 5. 出力空洞のQℓ値の最適化

京都大学エネルギー理工学研究所との共同研究で クライストロン2次元解析コード(KUFCI)の開発を 行った。このコードは電子銃からコレクタまでの電 子軌道解析を行うことができ、クライストロン内の 電子・電磁波相互作用を解析してコレクタへ入射す る電子の空間・速度分布を精度良く計算できる特徴 を有する。また、CWモードの飽和出力電力の測定 値に対して2%の誤差で一致し、また、入出力特性 も良く一致する計算結果が得られている。 そこで、パルスモードの147kVのビーム電圧で出 力空洞のQℓ値を変化させて出力電力を求めた。そ の結果を図7に示す。Qℓ値19の条件で計算した結 果、出力電力3.82MWとなった。この計算結果から も反射体はほぼ設計通りの位置にあると考えられ る。逆行電子による不安定現象が発生しない最大出 力電力は4.54MWであり、この時のQℓ値は27で あった。よって、CWモードのQℓ値が57の場合、 VSWR=2.11の反射体を使用すればパルスモードのQ ℓ値を27にすることができ、計算精度を考慮しても 4.2MW以上の出力電力が得られると考えられる。

#### **6.** まとめ

MAFIAを用いて出力空洞のQℓ値を低減させる反 射体の設計を行った。反射体の設計位置において出 力電力を安定して得られたので、計算の妥当性を確 認することができた。ビーム電圧147kVで目標とす る4.2MW以上の出力電力が得られる見通しがたっ た。今後、VSWR=2.11の反射体を製作し、パルス モードの出力試験を実施する予定である。

## 7.謝辞

コード開発及び計算に協力して頂いた京都大学エ ネルギー理工学研究所の吉川潔教授、大西正視教 授、山本靖助教授、増田開助手に感謝致します。

#### 8.参考文献

1)K.Hirano *et al.* : Proceedings of 21th Linear Accelerator Meeting in Japan, P311 (1996)



図7. ビーム電圧147kVでのQℓ値に対する出力電力