Proceedings of the 24th Linear Accelerator Meeting in Japan (July 7-9, 1999, Sapporo, Japan)

(P7-33)

RF Performance of Nb coated Copper Trial Superconducting Cavity for the High Intensity Proton Linac

Y. Kijima, T. Murai, M. Arakawa, H. Kitamura, K. Mukugi N. Ouchi^{*}, J. Kusano^{*}, N. Akaoka^{*}, M. Mizumoto^{*}

> Mitsubishi Electric Corporation (MELCO) Wadasaki-cho, Hyogo-ku, Kobe, Japan

*Japan Atomic Energy Research Institute (JAERI) Tokai-mura, Naka-gun, Ibaraki-ken, Japan

Abstract

The Neutron Science Project has been proposed at JAERI based on the superconducting proton linac. Operational stability and economics are a major consideration in this system. We have evaluated the performance of a Nb coated superconducting cavity as a candidate for a selected design parameters . A single cell cavity ($\beta = 0.805$, 600 MHz) was manufactured under an R&D collaboration between JAERI and MELCO, and tested for RF and mechanical properties . For trial purpuses, the cavity was coated by ACCEL GMBH using the European sputtering technology. The RF performance and mechanical charactristics of the cavity are reported in this paper.

大強度陽子加速器用Nbスパッタ試作超伝導空洞のRF特性

1. はじめに

原研中性子科学研究センターでは大強度陽子 加速器用超伝導リニアックを開発している。 超伝導リニアックは安定な加速運転、経済性 が要求されており、超伝導空洞の候補の1つ として Nb スパッタ空洞の評価を行った。 Nb 空洞では、 Nb の材料費が大きな比重を占 めていることから、 Nb スパッタ空洞の採用 で Nb 使用量を削減でき、空洞製作コストの 削減が期待される。しかし、国内で Bell-shape 型Nbスパッタ空洞をビームの長期運転に適 用した例はなく、また低エネルギー領域への 適用は開発段階である。今回は、欧州で実用 化されている Nb スパッタ空洞の技術^{1),2)} を β =0.805、 600MHz の 単 セ ル 空 洞 に 適 用 し て試作し、RF特性及び機械特性試験を行っ た。なお、スパッタリングはドイツ ACCEL 社にて実施した。

2. 試作空洞の形状

試作は Nb スパッタ空洞の実績が多数ある $\beta = 1$ の形状に近い高エネルギー部の空洞に 適用することとし、 $\beta = 0.805$ 、周波数 600MHz、 単セル空洞を選定した。空洞の形状を図1に 示す。また、 Superfish で計算した空洞の電磁 気的パラメータを表1に示す。

表 1 電磁気的パラン	(一夕(設計値)
Frequency	600 MHz
Eacc	7.03 MV/m
Epeak / Eacc	2.28
Hpeak / Eacc	51.1 Oe/(MV/m)
Geometrical Factor	218 Ω

図2 試作空洞の外観

3. Nbスパッタ空洞の製作 試作空洞の製作手順及びスパッタ条件は以 下のとおりである。 (1) 材料準備 a) 無酸素銅板:セル、ビームパイプ用 b) SUS316LN 板:フランジ用 (2) ハーフセルのスピニング加工 ビームパイプの成形 (3) 機械加工、トリミング a) ハーフセル、ビームパイプ b) フランジ (4) ハーフセル、ビームパイプの化学洗浄 (5) ビームパイプとフランジのろう付 (6) 電子ビーム溶接 (7) 化学研磨(1回目) 80 µ m: ダメージ表面層の除去 (8) 化学研磨(2回目) 仕上表面粗さ R_A = 0.1 μ m (9) 純水洗浄 R = 18 M Ω · cm (10) エタノール洗浄 (11) Nb スパッタリング ①カソード挿入 ②スパッタリング装置に設置 ③ベーキング 180 ± 15 ℃,24h ④プレスパッタリング 上下ビームパイプ端金具 4×10^{-3} mbar, 450V, 2.2A, 16min. ⑤スパッタリング:上下ビームパイプ 4×10^{-3} mbar, 450V, 3.3A, 16min. ⑥スパッタリング:セル 6 x 10⁻⁴ mbar, 420V, 5.9A, 50min. (12) 純水洗浄、乾燥 (13) 梱包、輸送 (14) 縦測定前処理 (15) 縦測定 試作空洞は、温度条件を変えて2台製作し た。1台目はスパッタリング時の空洞の温度 を190℃とし、予備として製作した2台目は

175 ℃とした。 このうち1台目の空洞 #1 について原研で 縦測定を行い、さらに寸法測定、機械的特性 測定を行った。

図2に今回試作した空洞の外観を示す。

4. 板厚及び応力測定結果

空洞内真空排気、大気外圧の室温での発生 応力分布を測定した。また、無酸素銅板厚 4mmの応力解析を ABAQUS コードを用いて行い、測定した板厚を反映した応力値に換算した。計算条件を表2に、応力測定位置、板厚、応力分布の測定結果を図3に示す。

測定は2軸歪ゲージを用い、ビーム軸Z方 向(ε₁)、フープH方向(ε₂)の歪み量 を測定し、歪み量から次の式により発生応力 (σ_1 、 σ_2)を求めた。 Z方向 $\sigma_1 = E \cdot (\epsilon_1 + \nu \cdot \epsilon_2) / (1 - \nu^2)$ H方向 $\sigma_2 = E \cdot (\epsilon_2 + \nu \cdot \epsilon_1) / (1 - \nu^2)$

表 2 応力解析条件

板	厚	母材部 4mm,溶接部 3mm
*	応力値は	t 測定板厚より換算して求めた
温	度	300K
材	質	無酸素銅
ヤン	グ率	$E = 1.15 \times 10^{-1.1} Pa$
ポア	シント	y = 0.33

図3 応力測定位置と板厚、応力分布

5. RF特性測定結果

5.1 縦測定前処理

RF性能測定に先立ち原研クリーンルーム 内で純水洗浄とベーキングの処理を行った。 (1)純水洗浄

純水: 18 M Ω ·cm 洗い流し 5 分 溜めすすぎ 3 回

洗い流し 20分 (2)縦測定用モニタ及びフランジ設置

(3) ベーキング、真空引き

この後、クライオスタット内に組み込み、縦 測定を行った。

5.2 縦測定結果

試作空洞#1の縦測定結果を図4に示す。 最大表面電界 Epeak が 4K で 19.9MV/m、 2K で 18.9MV/m に達し、設計値の 16MV/m 以上を満 また、温度を下げてスパッタリン たした。 グを行った2台目の試作空洞#2の縦測定結 果を図5に示す(CERNで測定)。表3に空 洞#1及び#2の縦測定結果をまとめた。

スパッタリングにおいて、カソード表面の ダメージや汚染が性能に影響を及ぼすことが 多い。最初に処理した空洞 #1 は fresh な Nb カ ソードであったことから、このことが引き続 き処理した空洞 #2の性能との差異の1要因 とも考えられる。

なお、本空洞は、初めての形状、周波数で スパッタリングを行ったもので、条件の改善、 最適化を行うことにより性能向上の可能性が ある。

表3Nbスパッタ試作空洞の縦測定結果

4K			2K			
	Epeak	Q o	Epeak	Q o		
#1	19.9MV/m	7.8×10^8	18.9MV/m	1.3×10^{9}		
#2	17 MV/m	1.1x10 ⁹	21 MV/m	2.3×10^{9}		
	O けいずわち Email-11の//m における値					

Qoはいすれも Epeak=1 MV/m

性能達成見込み予測 5.3

今回の試作空洞と近似形状である CERN で 試作された 352MHz, β =0.8 Nb スパッタ空洞の 性能測定結果³⁾から性能達成見込みを予測し た。4KではBCS抵抗が支配的と考え、表面 抵抗R。を、 △: エネルギーギャップ

 $R \ s \propto f^{-\alpha} / T \cdot \exp(-\Delta / kT)$ k:ボ ルソマン定数 T:絶対温度 において α=2 として換算した。 結果を表4に示す。

表 4	CERN	試化	ミ実	績か	ら	Ø	0	値	趂	笡	3)
<u>4X</u> T	CLININ			小貝ノノー	່	~	v		17	71	

1997 - S.	f	β	Epeak	Eacc	Q o
	MHz		/ Eacc	MV/m	x10 ⁹
CERN 試作	352	0.8	2.3	>6.0	6.5
見込換算	600	0.8	2.28	>6.0	2.2

Q。はいずれも Epeak=0MV/m における値

この見込み予測値から4K運転で2x10°程 度のO値は達成できる可能性があることが わかった。

性能向上に向けての課題 5.4

性能向上のための課題として、

(1) 空洞内面 Cu 下地表面状態の影響

- (2) スパッタリングプロセスの最適化
- (3) 空洞セル形状の最適化
- (4) スパッタリング条件の最適化

(5) Nb 皮膜の特性(残留抵抗値)の影響

等の検討が今後必要である。

6. まとめ

RF特性において、最大表面電界の設計値 16MV/m以上を達成することができ、今後の 実用可能性の見通しを得ることができた。 また、機械的特性においては発生応力の測

定値と計算値が概ね一致することを確認し、 空洞内部真空引きでは強度上の問題は無いこ とが明らかになった。

参考文献

- 1) C.Benvenuti, et al "Superconducting cavities produced by Magnetron Sputtering of Niobiun on Copper" Proc. of 3rd Workshop on RF Superconductivity (1988)
- 2) C.Benvenuti, et al "Status Report on CERN Activities Aiming at the Production of Sputter-coated Copper Superconducting RF Cavities for LEP " Proc.of 4th Workshop on RF Superconductivity (1989)
- 3) C.Benvenuti, et al "Produstion and Test of 352 MHz Niobium Sputtered Reduced BETA Cavities" Proc.of 8th Workshop on RF Superconductivity (1997)