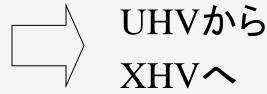

超高真空下におけるチャン材料の光刺激ガス脱離

高エネルギー加速器研究機構、山口大院理工

山本将博^{A)}、宮島司^{A)}、本田洋介^{A)}、 内山隆司^{A)}、栗巣普揮^{B)}、小林正典^{A)}

研究背景:極高真空装置用材料チタン

 10-1
 高真空(HV)
 10-5
 超高真空(UHV)
 10-9 極高真空(XHV)


 既存材料(ステンレス鋼・アルミニウム合金)
 チタン材料

デバイス製造用 薄膜形成装置 (スパッタリング装置)

デバイス分析 表面分析装置 (FE-SEM, X線光電子分光装置)

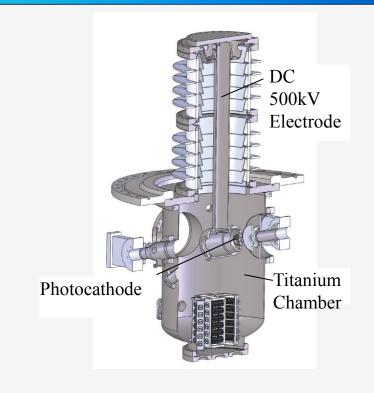
加速器施設

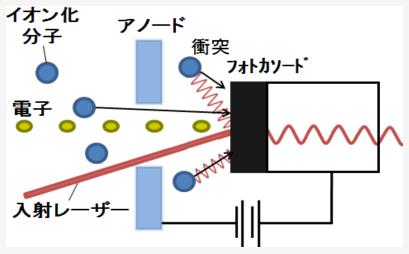
(大強度陽子加速器施設,エネルギー回収型放射光源)

チタン材料:超低ガス放出であり,一部の装置で実用化.

※真空ベーキング後の放出ガス量が非常に少ない.

光照射下のガス脱離は調べられていない.


研究背景:チタン材料の光刺激ガス脱離測定の必要性


エネルギー回収型放射光源(ERL)の電子銃

- ➤ 半導体フォトカソード
 - 長寿命化のために<u>10⁻¹⁰ Pa</u>(極高真空)が必要.
 - ⇒従来の真空材料では実現困難なため、 チタン製の電子銃を開発中.
- ◆ 問題点 ◆

入射レーザー(λ =530 nm)の 散乱光がチャンバー壁面へ照射され、 光刺激ガス脱離が起きる.

極高真空実現が懸念.

研究 目的

チタン製光刺激ガス脱離測定装置を開発し, チタン材料の光刺激ガス脱離量を測定する.

[1] 高性能光刺激ガス脱離測定装置の開発

測定下限: 10⁻¹⁴ A (分圧: 10⁻¹² Pa)

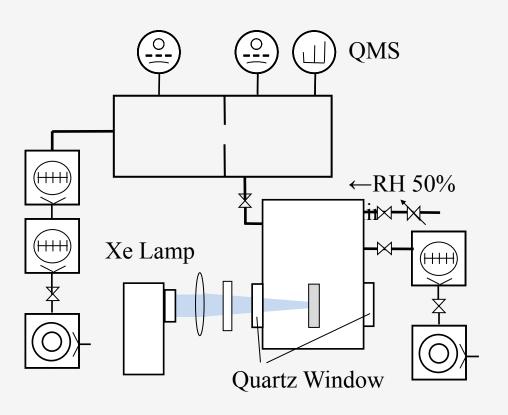
[2] チタン材料の光刺激ガス脱離測定

- ①種々の表面処理したチタン材料の光刺激ガス脱離
 - 表面処理:未処理,バフ研磨(BP),化学研磨(CP),バフ+化学研磨(BP+CP)
- ②光刺激ガス脱離の光波長依存性
 - •入射光波長: λ=185~2000 nm(紫外光~赤外光)
 - •入射光波長: λ=480~2000 nm(可視光~赤外光)

研究 目的

チタン製光刺激ガス脱離測定装置を開発し、 チタン材料の光刺激ガス脱離量を測定する.

[1] 高性能光刺激ガス脱離測定装置の開発


測定下限: 10⁻¹⁴ A (分圧: 10⁻¹² Pa)

[2] チタン材料の光刺激ガス脱離測定

- ①種々の表面処理したチタン材料の光刺激ガス脱離
 - 表面処理:未処理,バフ研磨(BP),化学研磨(CP),バフ+化学研磨(BP+CP)
- ②光刺激ガス脱離の光波長依存性
 - ·入射光波長:λ=185~2000 nm(紫外光~赤外光)
 - -入射光波長: λ=480~2000 nm(可視光~赤外光)

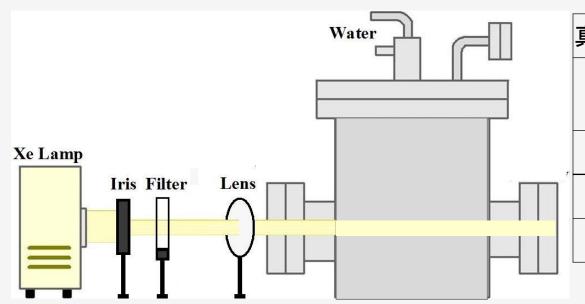
チタン製光刺激ガス脱離測定装置の構成と特徴

真空排気システムの特徴

真空容器 材料	高強度低合金チタン(KS100)製
主排気系	ターボ分子ポンプ(TMP)2台 (0.55 m³s ⁻¹ +0.19 m³s ⁻¹)
補助排気系	TMP+油回転ポンプ
圧力測定	B-A型ヌードイオンゲージ
質量分析	SEM型四重極質量分析計

120°C×19 hrs真空へーキング後

◆ 到達圧力:1×10-8 Pa以下


◆ QMSのイオン電流値

下限值:10-14 A台

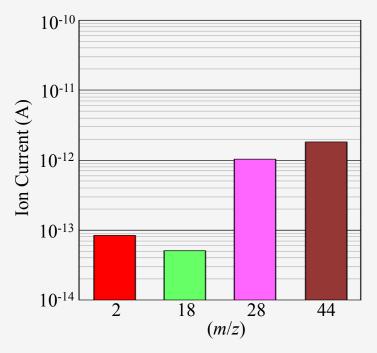
(分圧: 10⁻¹² Pa台)

チタン製光刺激ガス脱離測定装置の構成と特徴

光照射システムの特徴

真空容器材料	JIS2種 純チタン		
光源	150 W キセノンランプ (光波長:λ=185~2000 nm)		
光フィルター	480nm 以上透過		
光学窓	石英ガラス		
温度計	アルメル・クロメル熱電対		

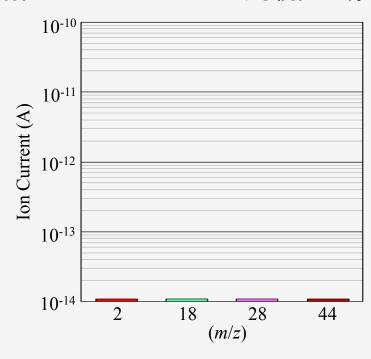
測定


- ◆「試料有り測定」=「試料有り(光有り)」ー「試料有り(光無し)」
- ◆「試料無し測定」=「試料無し(光有り)」-「試料無し(光無し)」 ※石英光学窓の光刺激ガス脱離を測定するため!!

「試料の光刺激ガス脱離」=「試料有り測定」ー「試料無し測定」

試料無し(バックグラウンド)測定_測定例

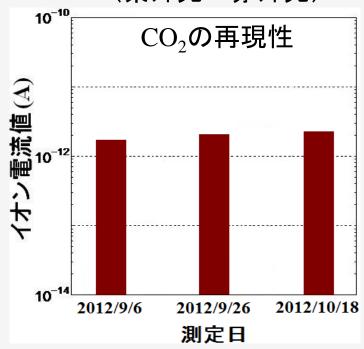
100°C×19hrs 真空ベーキング後


入射光:λ=185~2000 nm (紫外光~赤外光)

m/z=2 (H₂) , m/z=18(H₂O) : 10^{-14} A m/z=28 (CO) , m/z=44 (CO₂) : 10^{-12} A

光学窓から光刺激ガス脱離する。

入射光: λ=480~2000 nm(可視光~赤外光)



全脱離ガス種: 10⁻¹⁴ A

光学窓から光刺激ガス脱離はほとんど無い。

試料無し測定の再現性

入射光波長: λ=185~2000 nm (紫外光~赤外光)

- 試料無し測定の測定下限

H₂, H₂O:10⁻¹⁴~10⁻¹³Aオーダー

CO, CO₂: 10⁻¹² Aオーダー

- 試料無し測定の差異

差異:20%程度

試料無し測定の再現性を確認.

開発装置の測定下限は十分低い.

m/z	2 (H ₂)	18 (H ₂ O)	28 (CO)	44 (CO ₂)
2012/9/6	8.42×10^{-14}	5.10×10^{-14}	1.04×10^{-12}	1.82×10^{-12}
2012/9/26	1.52×10^{-13}	4.13×10^{-14}	1.41×10^{-12}	2.07×10^{-12}
2012/10/18	1.52×10^{-13}	3.86×10^{-14}	1.63×10^{-12}	2.37×10^{-12}
平均	1.30×10^{-13}	4.36×10^{-14}	1.36×10^{-12}	2.09×10^{-12}
差異(A)	$\pm 4.4 \times 10^{-14}$	$\pm 7.0 \times 10^{-15}$	$\pm 3.1 \times 10^{-13}$	$\pm 2.7 \times 10^{-13}$
	(34 %)	(16 %)	(23 %)	(13 %)

チタン材料の光刺激ガス脱離:実験方法

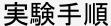
試料: JIS2種チタン

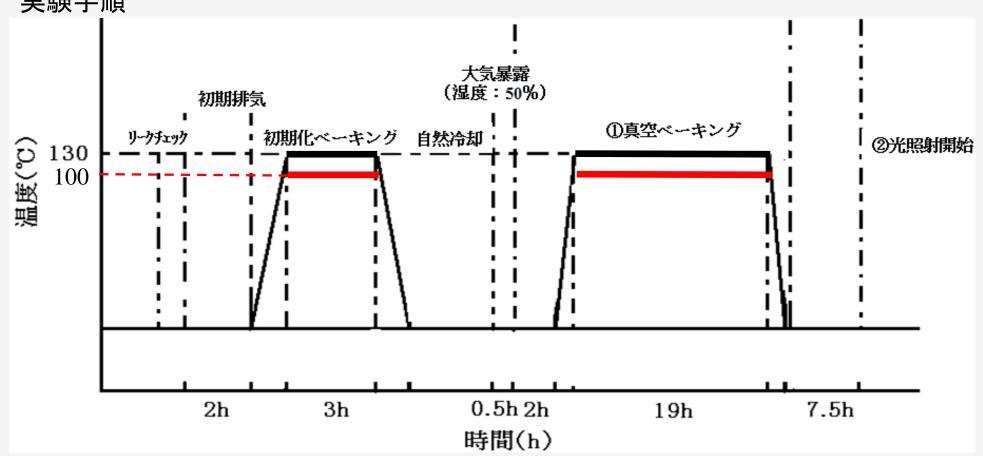
表面処理: 未処理,バフ研磨(BP),

化学研磨(CP),バフ+化学研磨(BP+CP)

表面粗さ: AFM測定

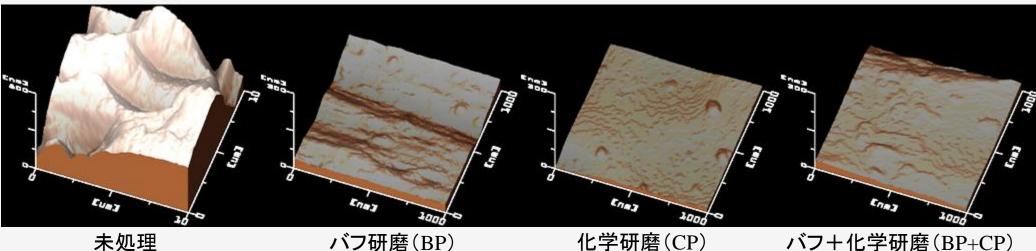
光刺激ガス脱離:


入射光波長: $\lambda=185\sim2000 \text{ nm}(紫外光~赤外光)$


入射光波長: $\lambda = 480 \sim 2000 \text{ nm}$ (可視光~赤外光)

チタン材料の光刺激ガス脱離:実験手順

試料洗浄


脱脂洗浄 \to 水洗 \to アルコール超音波洗浄(20分) \to 純水浸漬(2分) \to 純水超音波洗浄(20分) \to 乾燥 $(60^{\circ}C \times 30 分)$

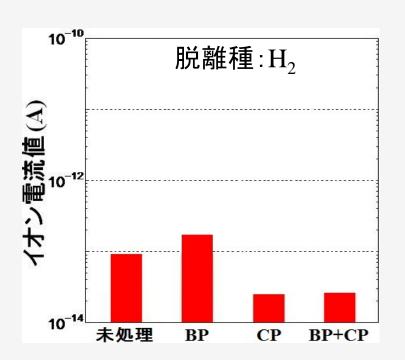
種々の表面処理したチタン材料の表面形態

原子間力顕微鏡(AFM)測定による表面粗さ評価

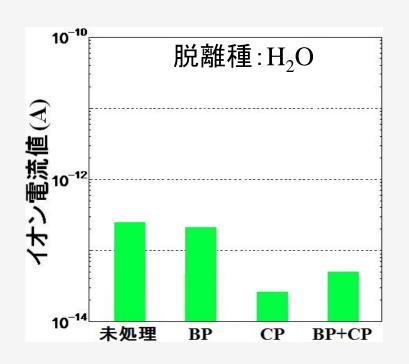
末処垤 測定範囲: 10×10 μm² バフ研磨(BP) 測定範囲:1×1 μm²

測定範囲:1×1 μm²

バフ+化学研磨(BP+CP) 測定範囲:1×1 μm²


中心線平均粗さ(nm)

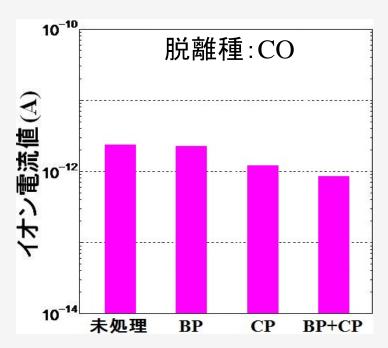
表面処理	未処理	バフ研磨	化学研磨	バフ+化学研磨
測定範囲: 10×10 μm²	94	18	38	11
測定範囲: 1 × 1 μm ²	_	5.6	2.3	1.8


表面処理ごとの表面粗さ(測定範囲:1×1 µm²)の比較 (未処理)>(バフ研磨)>(化学研磨)>(バフ+化学研磨)

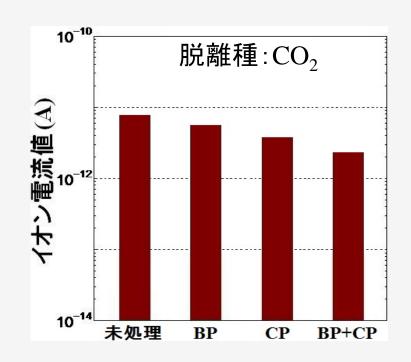
種々の表面処理した光刺激ガス脱離測定 1

試料:JIS2種純チタン

- -100°C×19hrs 真空ベーキング後
- •入射光波長: λ=185~2000 nm (紫外光~赤外光)


- 脱離量を未処理で比較

H₂:BPは約2倍増加, CPは約1/4, BP+CPは約1/4に低減した.


H₂O:BPは同等, CPは約1/10, BP+CPは約1/5に低減した.

種々の表面処理した光刺激ガス脱離測定 2

試料:JIS2種純チタン

- •100°C×19hrs 真空ベーキング後
- •入射光波長: λ=185~2000 nm (紫外光~赤外光)

・脱離量を未処理で比較

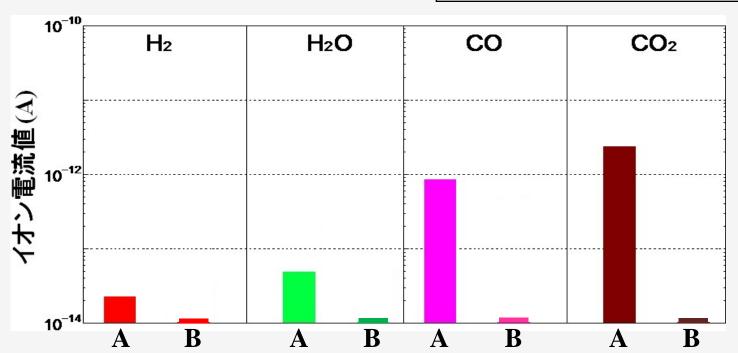
CO:BPは同等, CPは約1/2, BP+CPは約1/3に低減した.

CO2: BPは同等, CPは約1/2, BP+CPは約1/4に低減した.

種々の表面処理した光刺激ガス脱離測定のまとめ

- ・表面処理ごとの表面粗さ(AFM測定)の比較 (未処理)>(バフ研磨)>(化学研磨)>(バフ+化学研磨)
- 表面処理ごとの光刺激ガス脱離量(イオン電流値)の比較 (未処理)>(バフ研磨)>(化学研磨)>(バフ+化学研磨)

表面処理により、光刺激ガス脱離量を低減できる.


光刺激ガス脱離の入射光波長依存性

入射光波長

A:λ=185~2000 nm (紫外光~赤外光)

B:λ=480~2000 nm (可視光~赤外光)

- •100°C×19hrs 真空ベーキング後
- 試料: JIS2種純チタン (バフ+化学研磨処理)

H₂, H₂O:10⁻¹⁴ Aオーダー

CO, CO_2 : $\lambda = 185 \sim 2000$ nmで脱離量は 10^{-12} Aオーダーとなった. $\lambda = 480 \sim 2000$ nmで脱離量は約 $1/50 \sim 1/100$ に減少した.

光刺激ガス脱離はλ=185~480 nmの紫外光でのみ起きる.

結論

[1] 高性能光刺激ガス脱離測定装置の開発

QMSの検知下限(10-14 A)で有意な測定ができる程度に高感度の測定が可能.

[2] チタン材料の光刺激ガス脱離測定

- ①種々の表面処理したチタン材料の光刺激ガス測定 脱離量:(未処理)>(バフ研磨)>(化学研磨)>(バフ+化学研磨)
- ②光刺激ガス脱離の入射光波長依存性

光刺激ガス脱離はλ=185~480 nmの紫外光でのみ起きる.

※480nm以上の光では、光刺激ガス脱離は非常に少ない。 (ERL用電子銃のレーザー: 532 nm, 2 W以上)